已知等差數(shù)列
滿足:
,
.
的前n項和為
.
(Ⅰ)求
及
;
(Ⅱ)若
,
(
),求數(shù)列
的前
項和
.
科目:高中數(shù)學 來源: 題型:解答題
如果項數(shù)均為
的兩個數(shù)列
滿足
且集合
,則稱數(shù)列
是一對“
項相關數(shù)列”.
(Ⅰ)設
是一對“4項相關數(shù)列”,求
和
的值,并寫出一對“
項相
關數(shù)列”
;
(Ⅱ)是否存在“
項相關數(shù)列”
?若存在,試寫出一對
;若不存在,請說明理由;
(Ⅲ)對于確定的
,若存在“
項相關數(shù)列”,試證明符合條件的“
項相關數(shù)列”有偶數(shù)對.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列
及其前
項和
滿足:
(
,
).
(1)證明:設
,
是等差數(shù)列;
(2)求
及
;
(3)判斷數(shù)列
是否存在最大或最小項,若有則求出來,若沒有請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
等差數(shù)列{an}的前n項和為Sn,已知S3=
,且S1,S2,S4成等比數(shù)列,
(1)求數(shù)列{an}的通項公式.
(2)若{an}又是等比數(shù)列,令bn=
,求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設公差不為0的等差數(shù)列{an}的首項為1,且a2,a5,a14構(gòu)成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足
+
+…+
=1-
,n∈N*,求{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列
的前n項和為
,且
.
(Ⅰ)求數(shù)列
的通項公式;
(Ⅱ)令
,數(shù)列
的前n項和為
,若不等式
對任意
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在等差數(shù)列
中,
,
,記數(shù)列
的前
項和為
.
(1)求數(shù)列
的通項公式;
(2)是否存在正整數(shù)
、
,且
,使得
、
、
成等比數(shù)列?若存在,求出所有符合條件的
、
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(1)已知等差數(shù)列
中
,
,求
的公差
;
(2)有三個數(shù)成等比數(shù)列,它們的和等于14,它們的積等于64,求該數(shù)列的公比
.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com