【題目】已知x>0,由不等式x+
≥2
=2,x+
=
≥3
=3,…,可以推出結論:x+
≥n+1(n∈N*),則a=( )
A.2n
B.3n
C.n2
D.nn
科目:高中數學 來源: 題型:
【題目】已知橢圓E:
=1(a>b>0)的焦距為2
,其上下頂點分別為C1 , C2 , 點A(1,0),B(3,2),AC1⊥AC2 .
(1)求橢圓E的方程及離心率;
(2)點P的坐標為(m,n)(m≠3),過點A任意作直線l與橢圓E相交于點M,N兩點,設直線MB,BP,NB的斜率依次成等差數列,探究m,n之間是否滿足某種數量關系,若是,請給出m,n的關系式,并證明;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正三角形
中,過其中心
作邊
的平行線,分別交
,
與
,
,將
沿
折起到
的位置,使點
在平面
上的射影恰是線段
的中點
,則二面角
的平面角的大小是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
分別為橢圓C:
的左、右焦點,點
在橢圓上,且
軸,
的周長為6.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)E,F是橢圓C上異于點
的兩個動點,如果直線PE與直線PF的傾斜角互補,證明:直線EF的斜率為定值,并求出這個定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正項數列{an}的前n項和為Sn,且an和Sn滿足:4Sn=(an+1)2 (n=1,2,3……),
(1)求{an}的通項公式;(2)設bn=
,求{bn}的前n項和Tn;
(3)在(2)的條件下,對任意n∈N*,Tn
都成立,求整數m的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖5,在四棱錐P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中點.
(Ⅰ)證明:CD⊥平面PAE;
(Ⅱ)若直線PB與平面PAE所成的角和PB與平面ABCD所成的角相等,求四棱錐P-ABCD的體積.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年1月31日晚上月全食的過程分為初虧、食既、食甚、生光、復圓五個階段,月食的初虧發生在19時48分,20時51分食既,食甚時刻為21時31分,22時08分生光,直至23時12分復圓.全食伴隨有藍月亮和紅月亮,全食階段的“紅月亮”將在食甚時刻開始,生光時刻結束,一市民準備在19:55至21:56之間的某個時刻欣賞月全食,則他等待“紅月亮”的時間超過30分鐘的概率是__________。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com