【題目】兩條平行直線和圓的位置關系定義為:若兩條平行直線和圓有四個不同的公共點,則稱兩條平行線和圓“相交”;若兩平行直線和圓沒有公共點,則稱兩條平行線和圓“相離”;若兩平行直線和圓有一個、兩個或三個不同的公共點,則稱兩條平行線和圓“相切”.已知直線l1:2x﹣y+a=0,l2:2x﹣y+a2+1=0和圓:x2+y2+2x﹣4=0相切,則a的取值范圍是( )
A.a>7或a<﹣3
B.![]()
C.﹣3≤a≤一
或
≤a≤7
D.a≥7或a≤﹣3
科目:高中數學 來源: 題型:
【題目】如圖為一簡單組合體,其底面 ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2. ![]()
(1)求證:BE∥平面PDA;
(2)求四棱錐B﹣CEPD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的各項都是正數,且對任意n∈N* , 都有(an﹣1)(an+3)=4Sn , 其中Sn為數列{an}的前n項和.
(1)求證數列{an}是等差數列;
(2)若數列{
}的前n項和為Tn , 求Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量
與
.
(Ⅰ)若
在
方向上的投影為
,求λ的值;
(Ⅱ)命題P:向量
與
的夾角為銳角;
命題q:
,其中向量
,
=(
)(λ,α∈R).若“p或q”為真命題,“p且q”為假命題,求λ的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地最近十年對某商品的需求量逐年上升,下表是部分統計數據:
年份 | 2008 | 2010 | 2012 | 2014 | 2016 |
需要量(萬件) | 236 | 246 | 257 | 276 | 286 |
(1)利用所給數據求年需求量y與年份x之間的回歸直線方程
=
x+
;
(2)預測該地2018年的商品需求量(結果保留整數).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com