拋物線C的方程為

,過拋物線C上一點
P(
x0,
y0)(
x 0≠0)作斜率為k
1,k
2的兩條直線分別交拋物線C于A(
x1,
y1)B(
x2,
y2)兩點(
P,A,B三點互不相同),且滿足

.
(Ⅰ)求拋物線C的焦點坐標(biāo)和準(zhǔn)線方程;
(Ⅱ)設(shè)直線AB上一點M,滿足

,證明線段
PM的中點在
y軸上;
(Ⅲ)當(dāng)

=1時,若點
P的坐標(biāo)為(1,-1),求∠
PAB為鈍角時點A的縱坐標(biāo)

的取值范圍.
(Ⅰ)由拋物線

的方程

(

)得,焦點坐標(biāo)為

,準(zhǔn)線方程為

.
(Ⅱ)證明:設(shè)直線

的方程為

,直線

的方程為

.
點

和點

的坐標(biāo)是方程組

的解.將②式代入①式得

,于是

,故

③
又點

和點

的坐標(biāo)是方程組

的解.將⑤式代入④式得

.于是

,故

.
由已知得,

,則

. ⑥
設(shè)點

的坐標(biāo)為

,由

,則

.
將③式和⑥式代入上式得

,即

.
∴線段

的中點在

軸上.
(Ⅲ)因為點

在拋物線

上,所以

,拋物線方程為

.
由③式知

,代入

得

.
將

代入⑥式得

,代入

得

.
因此,直線

、

分別與拋物線

的交點

、

的坐標(biāo)為

,

.
于是

,

,

.
因

為鈍角且

、

、

三點互不相同,故必有

.
求得

的取值范圍是

或

.又點

的縱坐標(biāo)

滿足

,故當(dāng)

時,

;當(dāng)

時,

.即

將直線方程和拋物線方程組成的方程組轉(zhuǎn)化為一元二次方程,用韋達定理來求解.點評:解析幾何解題思維方法比較簡單,但對運算能力的要求比較高,平時練習(xí)要注意提高自己的運算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)曲線
C的方程是
y=
x3-
x,將
C沿
x軸、
y軸正向分別平移
t、
s單位長度后,得到曲線
C1.
(1)寫出曲線
C1的方程;
(2)證明:曲線
C與
C1關(guān)于點
A(

,

)對稱.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在極坐標(biāo)中,點M(ρ,θ)與點(ρ,-θ),(-ρ,π-θ)的位置關(guān)系是 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)函數(shù)

的圖象與直線
y=3在
y軸右側(cè)的交點按橫坐標(biāo)從小到大依次為
P1,
P2,
P3,…,若

,則
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知橢圓的中心在坐標(biāo)原點,焦點
F1,
F2在
x軸上,長軸
A1A2的長為4,左準(zhǔn)線
l與
x軸的交點為
M,|
MA1|∶|
A1F1|=2∶1.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線
l1:
x=
m(|
m|>1),
P為
l1上的動點,使∠
F1PF2最大的點
P記為
Q,求點
Q的坐標(biāo)(用
m表示).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知

若直線

:

與線段PQ的延長線相交,則

的取值范圍是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
直線xsinα+y+2=0的傾斜角的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知雙曲線

的右焦點為

,則該雙曲線的漸近線方程為
.
查看答案和解析>>