【題目】已知函數(shù)f(x)=x2﹣alnx(a∈R).
(1)若曲線f(x)在(1,f(1))處的切線與直線y=﹣x+5垂直,求實數(shù)a的值.
(2)x0∈[1,e],使得
≤0成立,求實數(shù)a的取值范圍.
【答案】
(1)解:函數(shù)f(x)=x2﹣alnx的導數(shù)為f′(x)=2x﹣
,
即有曲線f(x)在(1,f(1))處的切線斜率為2﹣a,
由切線與直線y=﹣x+5垂直,可得2﹣a=1,
解得a=1
(2)解:x0∈[1,e],使得
≤0成立,
即有x0∈[1,e],使得f(x0)+1+a≤0成立,
由lnx0∈[0,1],則1﹣lnx0∈[0,1],
即有x0∈[1,e],﹣a≥
的最小值,
由y=
的導數(shù)為y′=
,
由于3﹣2lnx0∈[1,3],則導數(shù)大于0,
即有函數(shù)y在[1,e]遞增,
則函數(shù)的最小值為2,
即有﹣a≥2,解得a≤﹣2.
則實數(shù)a的取值范圍是(﹣∞,﹣2]
【解析】(1)求出函數(shù)的導數(shù),求得切線的斜率,由兩直線垂直的條件:斜率之積為﹣1,即可得到所求a的值;(2)由題意可得x0∈[1,e],使得f(x0)+1+a≤0成立,運用參數(shù)分離和構造函數(shù)運用導數(shù),判斷單調性即可得到最小值,進而得到a的范圍.
【考點精析】解答此題的關鍵在于理解函數(shù)的最大(小)值與導數(shù)的相關知識,掌握求函數(shù)
在
上的最大值與最小值的步驟:(1)求函數(shù)
在
內的極值;(2)將函數(shù)
的各極值與端點處的函數(shù)值
,
比較,其中最大的是一個最大值,最小的是最小值.
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊長分別為a,b,c,且cos
=
.
(1)若a=3,b=
,求c的值;
(2)若f(A)=sin
(
cos
﹣sin
)+
,求f(A)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果函數(shù)f(x)=
滿足:對于任意的x1 , x2∈[0,2],都有|f(x1)﹣f(x2)|≤a2恒成立,則a的取值范圍是( )
A.[﹣
]
B.[﹣
]
C.(﹣
] ![]()
D.(﹣
]∪[
)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)=(log2x)2﹣2alog2x+b(x>0).當x=
時,f(x)有最小值﹣1.
(1)求a與b的值;
(2)求滿足f(x)<0的x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,圓C的方程為x2+y2-4x=0.若直線y=k(x+1)上存在一點P,使過P所作的圓的兩條切線相互垂直,則實數(shù)k的取值范圍是( )
A. (-∞,-2
) B. [-2
,2
]
C. [-
,
] D. (-∞,-2
]∪[2
,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐P﹣ABCD的底面ABCD是等腰梯形,AB∥CD,且AC⊥BD,AC與BD交于O,PO⊥底面ABCD,PO=2,AB=2CD=2
,E,F(xiàn)分別是AB,AP的中點. ![]()
(1)求證:AC⊥EF;
(2)求二面角F﹣OE﹣A的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正四棱錐V﹣ABCD中(底面是正方形,側棱均相等),AB=2,VA=
,且該四棱錐可繞著AB任意旋轉,旋轉過程中CD∥平面α,則正四棱錐V﹣ABCD在平面α內的正投影的面積的取值范圍是( )
A.[2,4]
B.(2,4]
C.[
,4]
D.[2,2
]
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com