(本小題滿分14分)
已知曲線
所圍成的封閉圖形的面積為
,曲線
的內切圓半徑為
.記
為以曲線
與坐標軸的交點為頂點的橢圓.
(Ⅰ)求橢圓
的標準方程;
(Ⅱ)設
是過橢圓
中心的任意弦,
是線段
的垂直平分線.
是
上異于橢圓中心的點.
(1)若
(
為坐標原點),當點
在橢圓
上運動時,求點
的軌跡方程;
(2)若
是
與橢圓
的交點,求
的面積的最小值.
(Ⅰ)![]()
(Ⅱ)(1)![]()
(2)![]()
(Ⅰ)由題意得
又
,解得
,
.
因此所求橢圓的標準方程為
.
(Ⅱ)(1)假設
所在的直線斜率存在且不為零,設
所在直線方程為
,
.
解方程組
得
,
,
所以
.
設
,由題意知
,
所以
,即
,
因為
是
的垂直平分線,所以直線
的方程為
,即
,
因此
,
又
,所以
,故
.
又當
或不存在時,上式仍然成立.
綜上所述,
的軌跡方程為
.
(2)當
存在且
時,由(1)得
,
,
由
解得
,
,
所以
,
,
.
解法一:由于![]()
![]()
![]()
![]()
,
當且僅當
時等號成立,即
時等號成立,
此時
面積的最小值是
.
當
,
.
當
不存在時,
.
綜上所述,
的面積的最小值為
.
解法二:因為![]()
,
又
,
,
當且僅當
時等號成立,即
時等號成立,
此時
面積的最小值是
.
當
,
.
當
不存在時,
.
綜上所述,
的面積的最小值為
.
科目:高中數學 來源: 題型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為
(a>b>0),曲線C2的方程為y=
,且曲線C1與C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數學 來源:2011年江西省撫州市教研室高二上學期期末數學理卷(A) 題型:解答題
(本小題滿分14分)
已知
=2,點(
)在函數
的圖像上,其中
=
.
(1)證明:數列
}是等比數列;
(2)設
,求
及數列{
}的通項公式;
(3)記
,求數列{
}的前n項和
,并證明
.
查看答案和解析>>
科目:高中數學 來源:2015屆山東省威海市高一上學期期末考試數學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網店對一應季商品過去20天的銷售價格及銷售量進行了監測統計發現,第
天(
)的銷售價格(單位:元)為
,第
天的銷售量為
,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額
關于第
天的函數關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年廣東省高三下學期第一次月考文科數學試卷(解析版) 題型:解答題
(本小題滿分14分)已知
的圖像在點
處的切線與直線
平行.
⑴ 求
,
滿足的關系式;
⑵ 若
上恒成立,求
的取值范圍;
⑶ 證明:
(
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com