【題目】如圖,在直五棱柱,
中,
,
,
,
,
,
.
![]()
(1)證明:
平面
;
(2)求平面
與平面
所成銳二面角的余弦值.
【答案】(1)證明見(jiàn)解析(2)![]()
【解析】
(1)先由題意可得
且
,從而有
平面
,即有
,再結(jié)合
即可證明
平面
;
(2) 以
為原點(diǎn),以
的方向?yàn)?/span>
軸,
軸,
軸的正方向,建立空間直角坐標(biāo)系
,然后寫(xiě)出相關(guān)點(diǎn)的坐標(biāo),求出相關(guān)平面的法向量,代入數(shù)量積求夾角公式即可.
(1)證明:因?yàn)槲謇庵?/span>
為直五棱柱,
所以
,
又
,且
,
所以
平面
.
因?yàn)?/span>
平面
,所以
.
因?yàn)?/span>
,
,
,
所以
平面
.
![]()
(2)解:因?yàn)?/span>
,所以
是以
為直角頂點(diǎn)的等腰直角三角形,
又
,
,
,
,
所以
,且
兩兩垂直.
以
為原點(diǎn),以
的方向?yàn)?/span>
軸,
軸,
軸的正方向,
建立如圖所示的空間直角坐標(biāo)系
,
則
,
,
,
,
,
,
,
,
.
設(shè)平面
的法向量為
,
則![]()
令
,得平面
的一個(gè)法向量為
.
設(shè)平面
的法向量為
,
則![]()
令
,得平面
的一個(gè)法向量為
.
設(shè)平面
與平面
所成銳二面角為
,
則
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)
(cosθ+1)cos2x+cosθ(cosx+1),有下述四個(gè)結(jié)論:①f(x)是偶函數(shù);②f(x)在(
,
)上單調(diào)遞減;③當(dāng)θ∈[
,
]時(shí),有|f(x)|
;④當(dāng)θ∈[
,
]時(shí),有|f'(x)|
;其中所有真命題的編號(hào)是( )
A.①③B.②④C.①③④D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
為等差數(shù)列
的前n項(xiàng)和,
是正項(xiàng)等比數(shù)列,且
,
.在①
,②
,③
這三個(gè)條件中任選一個(gè),回答下列為題:
(1)求數(shù)列
和
的通項(xiàng)公式;
(2)如果
(m,
),寫(xiě)出m,n的關(guān)系式
,并求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一個(gè)同學(xué)家開(kāi)了一個(gè)小賣(mài)部,他為了研究氣溫對(duì)熱飲飲料銷(xiāo)售的影響,經(jīng)過(guò)統(tǒng)計(jì),得到一個(gè)賣(mài)出的熱飲杯數(shù)與當(dāng)天氣溫的散點(diǎn)圖和對(duì)比表:
![]()
攝氏溫度 |
|
|
|
|
|
|
|
|
熱飲杯數(shù) |
|
|
|
|
|
|
|
|
(1)從散點(diǎn)圖可以發(fā)現(xiàn),各點(diǎn)散布在從左上角到右下角的區(qū)域里。因此,氣溫與當(dāng)天熱飲銷(xiāo)售杯數(shù)之間成負(fù)相關(guān),即氣溫越高,當(dāng)天賣(mài)出去的熱飲杯數(shù)越少。統(tǒng)計(jì)中常用相關(guān)系數(shù)
來(lái)衡量?jī)蓚(gè)變量之間線性關(guān)系的強(qiáng)弱.統(tǒng)計(jì)學(xué)認(rèn)為,對(duì)于變量
、
,如果
,那么負(fù)相關(guān)很強(qiáng);如果
,那么正相關(guān)很強(qiáng);如果
,那么相關(guān)性一般;如果
,那么相關(guān)性較弱。請(qǐng)根據(jù)已知數(shù)據(jù),判斷氣溫與當(dāng)天熱飲銷(xiāo)售杯數(shù)相關(guān)性的強(qiáng)弱.
(2)(i)請(qǐng)根據(jù)已知數(shù)據(jù)求出氣溫與當(dāng)天熱飲銷(xiāo)售杯數(shù)的線性回歸方程;
(ii)記
為不超過(guò)
的最大整數(shù),如
,
.對(duì)于(i)中求出的線性回歸方程
,將
視為氣溫與當(dāng)天熱飲銷(xiāo)售杯數(shù)的函數(shù)關(guān)系.已知?dú)鉁?/span>
與當(dāng)天熱飲每杯的銷(xiāo)售利潤(rùn)
的關(guān)系是
(單位:元),請(qǐng)問(wèn)當(dāng)氣溫
為多少時(shí),當(dāng)天的熱飲銷(xiāo)售利潤(rùn)總額最大?
(參考公式)
,
,![]()
(參考數(shù)據(jù))
,
,
.
,
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
當(dāng)
時(shí),求函數(shù)
的單調(diào)增區(qū)間;
若函數(shù)
在
上是增函數(shù),求實(shí)數(shù)a的取值范圍;
若
,且對(duì)任意
,
,
,都有
,求實(shí)數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
是
的導(dǎo)函數(shù).
(Ⅰ)當(dāng)
時(shí),對(duì)于任意的
,求
的最小值;
(Ⅱ)若存在
,使
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓
:
,點(diǎn)
,點(diǎn)
是圓
上任意一點(diǎn),線段
的垂直平分線交線段
于點(diǎn)
.
(1)求點(diǎn)
的軌跡方程.
(2)設(shè)點(diǎn)
,
是
的軌跡上異于頂點(diǎn)的任意兩點(diǎn),以
為直徑的圓過(guò)點(diǎn)
.求證直線
過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】環(huán)保部門(mén)要對(duì)所有的新車(chē)模型進(jìn)行廣泛測(cè)試,以確定它的行車(chē)?yán)锍痰牡燃?jí),右表是對(duì) 100 輛新車(chē)模型在一個(gè)耗油單位內(nèi)行車(chē)?yán)锍蹋▎挝唬汗铮┑臏y(cè)試結(jié)果.
![]()
(Ⅰ)做出上述測(cè)試結(jié)果的頻率分布直方圖,并指出其中位數(shù)落在哪一組;
(Ⅱ)用分層抽樣的方法從行車(chē)?yán)锍淘趨^(qū)間[38,40)與[40,42)的新車(chē)模型中任取5輛,并從這5輛中隨機(jī)抽取2輛,求其中恰有一個(gè)新車(chē)模型行車(chē)?yán)锍淘赱40,42)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】影響消費(fèi)水平的原因很多,其中重要的一項(xiàng)是工資收入.研究這兩個(gè)變量的關(guān)系的一個(gè)方法是通過(guò)隨機(jī)抽樣的方法,在一定范圍內(nèi)收集被調(diào)查者的工資收入和他們的消費(fèi)狀況.下面的數(shù)據(jù)是某機(jī)構(gòu)收集的某一年內(nèi)上海、江蘇、浙江、安徽、福建五個(gè)地區(qū)的職工平均工資與城鎮(zhèn)居民消費(fèi)水平(單位:萬(wàn)元).
地區(qū) | 上海 | 江蘇 | 浙江 | 安徽 | 福建 |
職工平均工資 | 9.8 | 6.9 | 6.4 | 6.2 | 5.6 |
城鎮(zhèn)居民消費(fèi)水平 | 6.6 | 4.6 | 4.4 | 3.9 | 3.8 |
(1)利用江蘇、浙江、安徽三個(gè)地區(qū)的職工平均工資和他們的消費(fèi)水平,求出線性回歸方程
,其中![]()
,
;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)1萬(wàn),則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)所得的線性回歸方程是否可靠?(
的結(jié)果保留兩位小數(shù))
(參考數(shù)據(jù):
,
)
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com