【題目】已知數(shù)列{an}的前n項和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1 .
(1)求數(shù)列{bn}的通項公式;
(2)令cn=
,求數(shù)列{cn}的前n項和Tn .
【答案】
(1)
解:Sn=3n2+8n,
∴n≥2時,an=Sn﹣Sn﹣1=6n+5,
n=1時,a1=S1=11,∴an=6n+5;
∵an=bn+bn+1,
∴an﹣1=bn﹣1+bn,
∴an﹣an﹣1=bn+1﹣bn﹣1.
∴2d=6,
∴d=3,
∵a1=b1+b2,
∴11=2b1+3,
∴b1=4,
∴bn=4+3(n﹣1)=3n+1
(2)
解:cn=
=
=6(n+1)2n,
∴Tn=6[22+322+…+(n+1)2n]①,
∴2Tn=6[222+323+…+n2n+(n+1)2n+1]②,
①﹣②可得﹣Tn=6[22+22+23+…+2n﹣(n+1)2n+1]=12+6×
﹣6(n+1)2n+1=(﹣6n)2n+1=﹣3n2n+2,
∴Tn=3n2n+2.
【解析】(1)求出數(shù)列{an}的通項公式,再求數(shù)列{bn}的通項公式;(2)求出數(shù)列{cn}的通項,利用錯位相減法求數(shù)列{cn}的前n項和Tn . ;本題考查數(shù)列的通項與求和,著重考查等差數(shù)列的通項與錯位相減法的運用,考查分析與運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地政府調(diào)查了工薪階層
人的月工資收人,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖,其中工資收人分組區(qū)間是
.(單位:百元)
![]()
(1)為了了解工薪階層對工資收人的滿意程度,要用分層抽樣的方法從調(diào)查的
人中抽取
人做電話詢問,求月工資收人在
內(nèi)應(yīng)抽取的人數(shù);
(2)根據(jù)頻率分布直方圖估計這
人的平均月工資為多少元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知函數(shù)
=(sin x+cos x)2+cos 2x.
(1)求函數(shù)
的最小正周期;
(2)求函數(shù)
在區(qū)間
上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
三個頂點坐標(biāo)分別為:
直線
經(jīng)過點![]()
(1)求
外接圓
的方程.
(2)若直線
與
相交于
兩點,且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,D是AC的中點,EF∥DB.![]()
(1)已知AB=BC,AE=EC,求證:AC⊥FB;
(2)已知G,H分別是EC和FB的中點,求證:GH∥平面ABC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,直線
與拋物線
相交于
、
兩點.
(1)求證:“如果直線
過點
,那么
”是真命題;
(2)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
(
)的左右焦點分別為
,
,短軸兩個端點為
,
,且四邊形
是邊長為
的正方形。
(1)求橢圓
的方程;
(2)已知圓的方程是
,過圓上任一點
作橢圓
的兩條切線
,
,求證: ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為1的正方體ABCD—A1B1C1D1中,E是BC的中點,
平面B1ED交A1D1于F。
(1)指出F在A1D1上的位置,并說明理由;
(2)求直線A1C與DE所成的角的余弦值;
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)滿足:①對任意x∈(0,+∞),恒有f(2x)=2f(x)成立;②當(dāng)x∈(1,2]時,f(x)=2﹣x.若f(a)=f(2020),則滿足條件的最小的正實數(shù)a的值為( )
A. 28 B. 100 C. 34 D. 36
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com