已知函數(shù)
.
(Ⅰ)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)當(dāng)
時(shí),不等式
恒成立,求實(shí)數(shù)
的取值范圍.
(Ⅲ)求證:
(
,e是自然對數(shù)的底數(shù)).
(Ⅰ)函數(shù)
的單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
;(Ⅱ)實(shí)數(shù)a的取值范圍是
;(Ⅲ)詳見解析.
解析試題分析:(Ⅰ)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間,即判斷
在各個(gè)區(qū)間上的符號,只需對
求導(dǎo)即可;(Ⅱ)當(dāng)
時(shí),不等式
恒成立,即
恒成立,令
(
),只需求出
最大值,讓最大值小于等于零即可,可利用導(dǎo)數(shù)求最值,從而求出
的取值范圍;(Ⅲ)要證
(
成立,即證
,即證
,由(Ⅱ)可知當(dāng)
時(shí),
在
上恒成立,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d4/5/zu5a22.png" style="vertical-align:middle;" />,從而證出.
試題解析:(Ⅰ)當(dāng)
時(shí),
(
),(1分)
(
),(2分)
由
解得
,由
解得
,
故函數(shù)
的單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
;(3分)
(Ⅱ)因當(dāng)
時(shí),不等式
恒成立,即
恒成立,設(shè)
(
),只需
即可. (4分)
由![]()
, (5分)
(ⅰ)當(dāng)
時(shí),
,當(dāng)
時(shí),
,函數(shù)
在
上單調(diào)遞減,
故
成立;(6分)
(ⅱ)當(dāng)
時(shí),由
,因
,所以
,
①若
,即
時(shí),在區(qū)間
上,
,則函數(shù)
在
上單調(diào)遞增,
在
上無最大值(或:當(dāng)
時(shí),
),此時(shí)不滿足條件;
②若
,即
時(shí),函數(shù)
在
上單調(diào)遞減,在區(qū)間
上單調(diào)遞增,同樣
在
上無最大值,不滿足條件 ;(8分)
(ⅲ)當(dāng)
時(shí),由
,∵
,∴
,
∴
,故函數(shù)
在
上單調(diào)遞減,故
成立.
綜上所述,實(shí)數(shù)a的取值范圍是![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)當(dāng)
時(shí),求曲線
在
處的切線方程;
(Ⅱ)設(shè)函數(shù)
,求函數(shù)
的單調(diào)區(qū)間;
(Ⅲ)若在
上存在一點(diǎn)
,使得
<
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x-ln(x+a)的最小值為0,其中a>0.
(1)求a的值;
(2)若對任意的x∈[0,+∞),有f(x)≤kx2成立,求實(shí)數(shù)k的最小值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
是R上的奇函數(shù),當(dāng)
時(shí)
取得極值
.
(I)求
的單調(diào)區(qū)間和極大值
(II)證明對任意![]()
不等式
恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
是二次函數(shù),不等式
的解集是(0,5),且f(x)在區(qū)間[-1,4]上的最大值是12.
(1)求
的解析式;
(2)是否存在自然數(shù)m,使得方程
=0在區(qū)間(m,m+1)內(nèi)有且只有兩個(gè)不等的實(shí)數(shù)根?若存在,求出所有m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
在
上為增函數(shù),且
,求解下列各題:
(1)求
的取值范圍;
(2)若
在
上為單調(diào)增函數(shù),求
的取值范圍;
(3)設(shè)
,若在
上至少存在一個(gè)
,使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
,
.
(Ⅰ)若
,求
的極小值;
(Ⅱ)在(Ⅰ)的結(jié)論下,是否存在實(shí)常數(shù)
和
,使得
和
?若存在,求出
和
的值.若不存在,說明理由.
(Ⅲ)設(shè)
有兩個(gè)零點(diǎn)
,且
成等差數(shù)列,試探究
值的符號.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=
-(a+2)x+lnx.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f (1))處的切線方程;
(2)當(dāng)a>0時(shí),若f(x)在區(qū)間[1,e)上的最小值為-2,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
己知函數(shù)
.
(I)若
是,
的極值點(diǎn),討論
的單調(diào)性;
(II)當(dāng)
時(shí),證明:
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com