【題目】(文)已知點D(1,
)在雙曲線C:
=1(a>0,b>0)上,且雙曲線的一條漸近線的方程是
x+y=0.
(1)求雙曲線C的方程;
(2)若過點(0,1)且斜率為k的直線l與雙曲線C有兩個不同交點,求實數k的取值范圍;
(3)設(2)中直線l與雙曲線C交于A、B兩個不同點,若以線段AB為直徑的圓經過坐標原點,求實數k的值.
【答案】
(1)解:由題知,有
解得 ![]()
因此,所求雙曲線C的方程是 ![]()
(2)解:∵直線l過點(0,1)且斜率為k,
∴直線l:y=kx+1.
代入雙曲線方程得(3﹣k2)x2﹣2kx﹣2=0.
又直線l與雙曲線C有兩個不同交點,
∴3﹣k2≠0且△=(﹣2k)2+8(3﹣k2)>0
解得k∈(﹣
,﹣
)∪(﹣
,
)∪(
,
)
(3)解:設點A、B的坐標為(x1,y1)、(x2,y2).
由(2)可得x1+x2=
,x1x2= ![]()
又以線段AB為直徑的圓經過坐標原點,
則kOAkOB=﹣1,即x1x2+y1y2=0,
∴x1x2+(kx1+1)(kx2+1)=0,
即(k2+1)x1x2+k(x1+x2)+1=0,
∴
,解得k=±1.
又k=±1滿足3﹣k2≠0且△=(﹣2k)2+8(3﹣k2)>0,
∴所求實數k=±1
【解析】(1)點D(1,
)代入雙曲線方程,結合且雙曲線的一條漸近線的方程是
x+y=0,建立方程,求出a,b,即可求雙曲線C的方程;(2)直接聯立直線與雙曲線方程,化為關于x的一元二次方程,利用根的判別式,即可求實數k的取值范圍;(3)存在實數k,使得以線段AB為直徑的圓經過坐標原點轉化為kOAkOB=﹣1,即x1x2+y1y2=0,整理后代入根與系數關系求解實數k的值.
科目:高中數學 來源: 題型:
【題目】函數f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<
)的圖象與y軸的交點為(0,
),它的一個對稱中心是M(
,0),點M與最近的一條對稱軸的距離是
.
(1)求此函數的解析式;
(2)求此函數取得最大值時x的取值集合;
(3)當x∈(0,π)時,求此函數的單調遞增區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示:有三根針和套在一根針上的若干金屬片.按下列規則,把金屬片從一根針上全部移到另一根針上.
(1)每次只能移動一個金屬片;
(2)在每次移動過程中,每根針上較大的金屬片不能放在較小的金屬片上面.將n個金屬片從1號針移到3號針最少需要移動的次數記為f(n);
①f(3)=;
②f(n)= . ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數g(x)=mx2﹣2mx+n+1(m>0)在區間[0,3]上有最大值4,最小值0.
(1)求函數g(x)的解析式;
(2)設f(x)=
.若f(2x)﹣k2x≤0在x∈[﹣3,3]時恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖(1)所示,已知四邊形
是由
和直角梯形
拼接而成的,其中
.且點
為線段
的中點,
,
.現將
沿
進行翻折,使得二面角
的大小為90°,得到圖形如圖(2)所示,連接
,點
分別在線段
上.
![]()
![]()
(Ⅰ)證明:
;
(Ⅱ)若三棱錐
的體積為四棱錐
體積的
,求點
到平面
的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com