【題目】某年高考中,某省10萬(wàn)考生在滿分為150分的數(shù)學(xué)考試中,成績(jī)分布近似服從正態(tài)分布N(110,100),則分?jǐn)?shù)位于區(qū)間(130,150]分的考生人數(shù)近似為( ) (已知若X~N(μ,σ2),則P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544,P(μ﹣3σ<X<μ+3σ)=0.9974.
A.1140
B.1075
C.2280
D.2150
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果對(duì)一切實(shí)數(shù)x、y,不等式
﹣cos2x≥asinx﹣
恒成立,則實(shí)數(shù)a的取值范圍是( )
A.(﹣∞,
]
B.[3,+∞)
C.[﹣2
,2
]
D.[﹣3,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的奇函數(shù)f(x)和偶函數(shù)g(x)滿足f(x)=2g(x)+
,若f(
)+f(cos2θ)<f(π)﹣f(
),則θ的取值范圍是( )
A.(2kπ+
,2kπ+
),k∈Z
B.(2kπ﹣
,2kπ)∪(2kπ,2kπ+π)∪(2kπ+π,2kπ+
π),k∈Z
C.(2kπ﹣
,2kπ﹣
),k∈Z
D.(2kπ﹣
,2kπ﹣π)∪(2kπ﹣π,2kπ)∪(2kπ,2kπ+
),k∈Z
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C:ρsin2θ=2acosθ(a>0),l:
(t為參數(shù))
(1)求曲線C的普通方程,l的直角坐標(biāo)方程
(2)設(shè)l與C交于M,N兩點(diǎn),點(diǎn)P(﹣2,0),若|PM|,|MN|,|PN|成等比數(shù)列,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形ABCD中,AB=8,AD=3,點(diǎn)E,F(xiàn)分別為AB、CD的中點(diǎn),將四邊形AEFD沿EF折到A1EFD1的位置,使∠A1EB=120°,如圖2所示,點(diǎn)G、H分別在A1B、D1C上,A1G=D1H=
,過(guò)點(diǎn)G、H的平面α與幾何體A1EB﹣D1FC的面相交,交線圍成一個(gè)正方形. ![]()
(1)在圖中畫出這個(gè)正方形(不必說(shuō)明畫法和理由);
(2)求點(diǎn)E到平面α的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足(2c﹣a)cosB﹣bcosA=0.
(Ⅰ)求角B的大小;
(Ⅱ)求
sinA+sin(C﹣
)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x),滿足(x﹣2)[f′(x)﹣f(x)]>0,且f(4﹣x)=e4﹣2xf(x),則下列關(guān)于 f(x)的命題正確的是( )
A.f(3)>e2f(1)
B.f(3)<ef(2)
C.f(4)<e4f(0)
D.f(4)<e5f(﹣1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司計(jì)劃明年用不超過(guò)6千萬(wàn)元的資金投資于本地養(yǎng)魚場(chǎng)和遠(yuǎn)洋捕撈隊(duì).經(jīng)過(guò)本地養(yǎng)魚場(chǎng)年利潤(rùn)率的調(diào)研,得到如圖所示年利潤(rùn)率的頻率分布直方圖.對(duì)遠(yuǎn)洋捕撈隊(duì)的調(diào)研結(jié)果是:年利潤(rùn)率為60%的可能性為0.6,不賠不賺的可能性為0.2,虧損30%的可能性為0.2.假設(shè)該公司投資本地養(yǎng)魚場(chǎng)的資金為x(x≥0)千萬(wàn)元,投資遠(yuǎn)洋捕撈隊(duì)的資金為y(y≥0)千萬(wàn)元. ![]()
(1)利用調(diào)研數(shù)據(jù)估計(jì)明年遠(yuǎn)洋捕撈隊(duì)的利潤(rùn)ξ的分布列和數(shù)學(xué)期望Eξ.
(2)為確保本地的鮮魚供應(yīng),市政府要求該公司對(duì)本地養(yǎng)魚場(chǎng)的投資不得低于遠(yuǎn)洋捕撈隊(duì)的一半.適用調(diào)研數(shù)據(jù),給出公司分配投資金額的建議,使得明年兩個(gè)項(xiàng)目的利潤(rùn)之和最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知
.
(1)求角B的大小;
(2)若b=
,a+c=3,求△ABC的面積.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com