已知函數(shù)
.
(1)當(dāng)
時(shí),求
的最小值;
(2)若函數(shù)
在區(qū)間
上為單調(diào)函數(shù),求實(shí)數(shù)
的取值范圍;
(3)當(dāng)
時(shí),不等式
恒成立,求實(shí)數(shù)
的取值范圍.
(1) 3.(2)
.(3)
.
解析試題分析:(1) 當(dāng)
時(shí),
![]()
當(dāng)
時(shí) 函數(shù)
取最小值3.
(2)
設(shè)![]()
依題意
得
.
(3) 當(dāng)
時(shí)
恒成立
當(dāng)
時(shí)
恒成立
設(shè)
則![]()
![]()
(1)當(dāng)
時(shí),
在
單調(diào)遞增,![]()
(2)當(dāng)
時(shí),設(shè)![]()
有兩個(gè)根,一個(gè)根大于1,一個(gè)根小于1.
不妨設(shè) ![]()
當(dāng)
時(shí)
即
在
單調(diào)遞減 ![]()
不滿足已知條件.
綜上:
的取值范圍為
.
考點(diǎn):本題考查了導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):此類問題是在知識(shí)的交匯點(diǎn)處命題,將函數(shù)、導(dǎo)數(shù)、不等式、方程的知識(shí)融合在一起進(jìn)行考查,重點(diǎn)考查了利用導(dǎo)數(shù)研究函數(shù)的極值與最值等知識(shí)
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在R上的函數(shù)f(x)是最小正周期為2的奇函數(shù), 且當(dāng)x∈(0, 1)時(shí), f (x)=
.
(1)求f (x)在[-1, 1]上的解析式;
(2)證明f (x)在(—1, 0)上時(shí)減函數(shù);
(3)當(dāng)λ取何值時(shí), 不等式f (x)>λ在R上有解?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知正比例函數(shù)y=2x的圖像l1與反比例函數(shù)y=
的圖像相交于點(diǎn)A(a,2),將直線l1向上平移3個(gè)單位得到的直線l2與雙曲線相交于B、C兩點(diǎn)(點(diǎn)B在第一象限),與y軸交于點(diǎn)D.![]()
(1)求反比例函數(shù)的解析式;
(2)求△DOB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
是函數(shù)
的一個(gè)極值點(diǎn)。
(1)求
與
的關(guān)系式(用
表示
),并求
的單調(diào)區(qū)間;
(2)設(shè)
,若存在
,使得
成立,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(Ⅰ)若函數(shù)
無零點(diǎn),求實(shí)數(shù)
的取值范圍;
(Ⅱ)若函數(shù)
在
有且僅有一個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)![]()
(1)當(dāng)
時(shí),求函數(shù)
的值域;
(2)若函數(shù)
是(-
,+
)上的減函數(shù),求實(shí)數(shù)
的高考資源網(wǎng)取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
。
(1)若
在
處取得極值,求
的值;
(2)求
的單調(diào)區(qū)間;
(3)若
且
,函數(shù)
,若對(duì)于
,總存在
使得
,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分) 已知
為實(shí)數(shù),
,
(1)若
,求
的單調(diào)區(qū)間;
(2)若
,求
在[-2,2] 上的最大值和最小值。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com