【題目】如圖,ABCD是正方形,O是正方形的中心,PO
底面ABCD,E是PC的中點(diǎn)。
![]()
求證:(1)PA∥平面BDE ;
(2)平面PAC
平面BDE.
【答案】證明:(Ⅰ)連結(jié)EO,
在△PAC中,∵O是AC的中點(diǎn),E是PC的中點(diǎn),
![]()
∴OE∥AP
又∵OE
平面BDE,
PA
平面BDE,
∴PA∥平面BDE
(Ⅱ)∵PO
底面ABCD,
∴PO
BD
又∵AC
BD,且AC
PO=O,
∴BD
平面PAC.
而BD
平面BDE,
∴平面PAC
平面BDE。
【解析】
證明:(Ⅰ)連結(jié)EO,
在△PAC中,∵O是AC的中點(diǎn),E是PC的中點(diǎn),
∴OE∥AP.
又∵OE
平面BDE,
PA
平面BDE,
∴PA∥平面BDE.
(Ⅱ)∵PO
底面ABCD,
∴PO
BD.
又∵AC
BD,且AC
PO=O,
∴BD
平面PAC.
而BD
平面BDE,
∴平面PAC
平面BDE.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)
,關(guān)于x的方程
有3個(gè)不同的實(shí)數(shù)根,則( )
A. b<﹣2且c>0B. b>﹣2且c<0C. b=﹣2且c=0D. b>﹣2且c=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某重點(diǎn)中學(xué)100位學(xué)生在市統(tǒng)考中的理科綜合分?jǐn)?shù),以
,
,
,
,
,
,
分組的頻率分布直方圖如圖.
![]()
(1)求直方圖中
的值;
(2)求理科綜合分?jǐn)?shù)的眾數(shù)和中位數(shù);
(3)在理科綜合分?jǐn)?shù)為
,
,
,
的四組學(xué)生中,用分層抽樣的方法抽取11名學(xué)生,則理科綜合分?jǐn)?shù)在
的學(xué)生中應(yīng)抽取多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】保險(xiǎn)公司統(tǒng)計(jì)的資料表明:居民住宅區(qū)到最近消防站的距離x(單位:千米)和火災(zāi)所造成的損失數(shù)額y(單位:千元)有如下的統(tǒng)計(jì)資料:
距消防站距離x(千米) | 1.8 | 2.6 | 3.1 | 4.3 | 5.5 | 6.1 |
火災(zāi)損失費(fèi)用y(千元) | 17.8 | 19.6 | 27.5 | 31.3 | 36.0 | 43.2 |
如果統(tǒng)計(jì)資料表明y與x有線性相關(guān)關(guān)系,試求:
(Ⅰ)求相關(guān)系數(shù)
(精確到0.01);
(Ⅱ)求線性回歸方程(精確到0.01);
(III)若發(fā)生火災(zāi)的某居民區(qū)與最近的消防站相距10.0千米,評(píng)估一下火災(zāi)的損失(精確到0.01).
參考數(shù)據(jù):
,
,
,
,
,![]()
參考公式:相關(guān)系數(shù)
,回歸方程
中斜率和截距的最小二乘估計(jì)公式分別為:
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形面積可無(wú)限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出n的值為( ) (參考數(shù)據(jù):
≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)![]()
A.12
B.24
C.36
D.48
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列
的前
項(xiàng)和為
,
且
.其中
為常數(shù).
(1)求
的值及數(shù)列
的通項(xiàng)公式;
(2)記
,數(shù)列
的前
項(xiàng)和為
,若不等式
對(duì)任意
恒成立 ,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓
的離心率為
,橢圓
上一點(diǎn)
到左右兩個(gè)焦點(diǎn)
的距離之和是4.
(1)求橢圓的方程;
(2)已知過(guò)
的直線與橢圓
交于
兩點(diǎn),且兩點(diǎn)與左右頂點(diǎn)不重合,若
,求四邊形
面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下列兩個(gè)命題:
函數(shù)
在[2,+∞)單調(diào)遞增;
關(guān)于
的不等式
的解集為
.若
為真命題,
為假命題,求
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com