【題目】在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù),
),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求直線
的普通方程與曲線
的直角坐標(biāo)方程;
(2)若直線
與曲線
交于
、
兩點(diǎn),求
的最小值.
【答案】(1)
,
;(2)![]()
【解析】分析:(1)將參數(shù)方程利用代入法消去參數(shù)可得直線
的普通方程,利用
即可得曲線
的直角坐標(biāo)方程;(2)先證明直線
過定點(diǎn)
,點(diǎn)
在圓
的內(nèi)部.當(dāng)直線
與線段
垂直時(shí),
取得最小值,利用勾股定理可得結(jié)果..
詳解:(1)將
(
為參數(shù),
)消去參數(shù)
,
得直線,
,即
.
將
代入
,得
,
即曲線
的直角坐標(biāo)方程為
.
(2)設(shè)直線
的普通方程為
,其中
,又
,
∴
,則直線
過定點(diǎn)
,
∵圓
的圓心
,半徑
,
,
故點(diǎn)
在圓
的內(nèi)部.
當(dāng)直線
與線段
垂直時(shí),
取得最小值,
∴
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于函數(shù)
的判斷正確的是( )
①
的解集是
;②當(dāng)
時(shí)有極小值,當(dāng)
時(shí)有極大值;
③
沒有最小值,也沒有最大值.
A. ①③ B. ①②③ C. ② D. ①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù).當(dāng)x>0時(shí),f(x)=x2﹣4x,則不等式f(x)>x 的解集用區(qū)間表示為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校研究性學(xué)習(xí)小組調(diào)查學(xué)生使用智能手機(jī)對學(xué)習(xí)成績的影響,部分統(tǒng)計(jì)數(shù)據(jù)如下表:
使用智能手機(jī) | 不使用智能手機(jī) | 總計(jì) | |
學(xué)習(xí)成績優(yōu)秀 | 4 | 8 | 12 |
學(xué)習(xí)成績不優(yōu)秀 | 16 | 2 | 18 |
總計(jì) | 20 | 10 | 30 |
(Ⅰ)根據(jù)以上
列聯(lián)表判斷,能否在犯錯(cuò)誤的概率不超過0.005的前提下認(rèn)為使用智能手機(jī)對學(xué)習(xí)成績有影響?
(Ⅱ)從學(xué)習(xí)成績優(yōu)秀的12名同學(xué)中,隨機(jī)抽取2名同學(xué),求抽到不使用智能手機(jī)的人數(shù)
的分布列及數(shù)學(xué)期望.
參考公式:
,其中![]()
參考數(shù)據(jù):
| 0.05 | 0,。025 | 0.010 | 0.005 | 0.001 |
| 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)求函數(shù)
的最小正周期;
(Ⅱ)求函數(shù)
在區(qū)間
上的最值以及相應(yīng)的x的取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)設(shè)0<x<
,求函數(shù)y=x(3﹣2x)的最大值;
(2)解關(guān)于x的不等式x2-(a+1)x+a<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(x﹣
)+cos(x﹣
),g(x)=2sin2
.
(1)若α是第一象限角,且f(α)=
,求g(α)的值;
(2)求使f(x)≥g(x)成立的x的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓O的直徑,點(diǎn)C是圓O上異于A,B的點(diǎn),直線PC⊥平面ABC,E,F(xiàn)分別是PA,PC的中點(diǎn). ![]()
(1)記平面BEF與平面ABC的交線為l,試判斷直線l與平面PAC的位置關(guān)系,并加以證明;
(2)設(shè)(1)中的直線l與圓O的另一個(gè)交點(diǎn)為D,且點(diǎn)Q滿足
.記直線PQ與平面ABC所成的角為θ,異面直線PQ與EF所成的角為α,二面角E﹣l﹣C的大小為β.求證:sinθ=sinαsinβ.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com