【題目】過拋物線y2=2px(p>0)的焦點F的直線l與拋物線交于B,C兩點,l與拋物線的準線交于點A,且|AF|=6,
=2
,
(1)求拋物線方程.
(2)求|BC|.
【答案】(1)
(2)![]()
【解析】
(1)利用拋物線的定義即可得到拋物線的方程;(2)由已知條件可得到直線的斜率,從而寫出直線l的方程,將直線方程與拋物線方程聯立,利用拋物線的定義即可得到弦長.
(1)不妨設直線l的傾斜角為θ,其中0<θ<
,B(x1,y1),C(x2,y2),
由題意可知|BF|=3,點B在x軸的上方,
過點B作該拋物線準線的垂線,垂足為B1,
則|BB1|=|BF|=3,
,由此可得p=2,
所以拋物線的方程為y2=4x.
(2)焦點F(1,0),則cosθ=
=
,
則sin θ=
,
因此tan θ=
,
故直線l的方程為y=2
(x-1),
由
消去y,得8(x-1)2=4x,
即2x2-5x+2=0,所以x1+x2=
,
由拋物線的定義,知|BC|=|BF|+|CF|=x1+x2+
=x1+x2+p=
+2=
.
科目:高中數學 來源: 題型:
【題目】已知命題
關于
的不等式
的解集是
,命題
函數
的定義域為
.
(1)如果
為真命題,求實數
的取值范圍;
(2)如果
為真命題,
為假命題, 求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,直線C1:x=﹣2,圓C2:(x﹣1)2+(y﹣2)2=1,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系.
(Ⅰ)求C1 , C2的極坐標方程;
(Ⅱ)若直線C3的極坐標方程為θ=
(ρ∈R),設C2與C3的交點為M,N,求△C2MN的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據環保部門測定,某處的污染指數與附近污染源的強度成正比,與到污染源距離的平方成反比,比例常數為
.現已知相距
的
兩家化工廠(污染源)的污染強度分別為
,它們連線上任意一點
處(異于
兩點)的污染指數
等于兩化工廠對該處的污染指數之和.設
.
(1)試將
表示為
的函數;
(2)若
,且
時,
取得最小值,試求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:
=1(a>b>0)過點A(0,3),與雙曲線
=1有相同的焦點
(1)求橢圓C的方程;
(2)過A點作兩條相互垂直的直線,分別交橢圓C于P,Q兩點,則PQ是否過定點?若是,求出定點的坐標,若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓錐曲線C經過定點P(3,
),它的一個焦點為F(1,0),對應于該焦點的準線為x=-1,斜率為2的直線
交圓錐曲線C于A、B兩點,且 AB =
,求圓錐曲線C和直線
的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,∠BAC=
,P為∠BAC內部一點,過點P的直線與∠BAC的兩邊交于點B,C,且PA⊥AC,AP=
.
(Ⅰ)若AB=3,求PC;
(Ⅱ)求
的取值范圍.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線l過點P(2,
)且傾斜角為α,以坐標原點為極點,x軸的非負半軸為極軸,建立極坐標系,曲線C的極坐標方程為ρ=4cos(θ﹣
),直線l與曲線C相交于A,B兩點;
(1)求曲線C的直角坐標方程;
(2)若
,求直線l的傾斜角α的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com