已知冪函數(shù)
的圖象與x軸,y軸無交點(diǎn)且關(guān)于原點(diǎn)對稱,又有函數(shù)f(x)=x2-alnx+m-2在(1,2]上是增函數(shù),g(x)=x-
在(0,1)上為減函數(shù).
①求a的值;
②若
,數(shù)列{an}滿足a1=1,an+1=p(an),(n∈N+),數(shù)列{bn},滿足
,
,求數(shù)列{an}的通項(xiàng)公式an和sn.
③設(shè)
,試比較[h(x)]n+2與h(xn)+2n的大小(n∈N+),并說明理由.
①
;②
;
;③見解析.
解析試題分析:①由冪函數(shù)的定義和性質(zhì)可以知道
的取值集合,由圖像關(guān)于原點(diǎn)對稱的函數(shù)是奇函數(shù)可以確定
的值,將
的值代入
,
的解析式后,根據(jù)函數(shù)的單調(diào)性與導(dǎo)函數(shù)的關(guān)系以及不等式的恒成立問題的解法就可以知道
滿足的不等式,就可以解得
的值;②先由已知條件求出
的解析式,然后得出
,
的關(guān)系,由函數(shù)構(gòu)造的方法可以求得
的解析式,代入
即可,再由數(shù)列求和公式求得
的值;③先求出
的解析式,再由相減的方法來判斷兩個(gè)式子的大小,最后減得的結(jié)果和0比較即可,注意分類討論的思想.
試題解析:①冪函數(shù)的圖像與
軸,
軸無交點(diǎn),則有
,解得![]()
又
,∴
或
,
又冪函數(shù)的圖像關(guān)于原點(diǎn)對稱,則有冪函數(shù)是奇函數(shù),
當(dāng)
時(shí),
是偶函數(shù),不合題意,舍去,
當(dāng)
時(shí),
是奇函數(shù),∴
,
∴
,求導(dǎo)得
,
又∵
在
上是增函數(shù),∴
在
上恒成立,
解得
,
又∵
,
在
上為減函數(shù),
∴
在
上恒成立,
解得
,
綜上知
; ..3分
②∵
,
∴
∴
∴
∴
,
∴
是首項(xiàng)為
公比
的等比數(shù)列,
∴
解得
,
∴
,
∴
,
; .6分
③∵
,
當(dāng)
時(shí),
,
當(dāng)
時(shí),![]()
=![]()
=![]()
=![]()
=![]()
,
. 10分
考點(diǎn):函數(shù)的單調(diào)性與導(dǎo)函數(shù)的關(guān)系,奇函數(shù)圖像的性質(zhì),等比數(shù)列的構(gòu)造.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
某地開發(fā)了一個(gè)旅游景點(diǎn),第1年的游客約為100萬人,第2年的游客約為120萬人.某數(shù)學(xué)興趣小組綜合各種因素預(yù)測:①該景點(diǎn)每年的游客人數(shù)會逐年增加;②該景點(diǎn)每年的游客都達(dá)不到130萬人.該興趣小組想找一個(gè)函數(shù)
來擬合該景點(diǎn)對外開放的第![]()
年與當(dāng)年的游客人數(shù)
(單位:萬人)之間的關(guān)系.
(1)根據(jù)上述兩點(diǎn)預(yù)測,請用數(shù)學(xué)語言描述函數(shù)
所具有的性質(zhì);
(2)若
=
,試確定
的值,并考察該函數(shù)是否符合上述兩點(diǎn)預(yù)測;
(3)若
=
,欲使得該函數(shù)符合上述兩點(diǎn)預(yù)測,試確定
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f0/b/1jotp2.png" style="vertical-align:middle;" />.
⑴求
的取值范圍;
⑵當(dāng)
取最大值時(shí),解關(guān)于
的不等式
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)已知函數(shù)
(
)在區(qū)間
上有最大值
和最小值
.設(shè)
.
(1)求
、
的值;
(2)若不等式
在
上有解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
, ![]()
.
(1)若
, 函數(shù)
在其定義域是增函數(shù),求
的取值范圍;
(2)在(1)的結(jié)論下,設(shè)函數(shù)
的最小值;
(3)設(shè)函數(shù)
的圖象
與函數(shù)
的圖象
交于點(diǎn)
,過線段
的中點(diǎn)
作
軸的垂線分別交
、
于點(diǎn)
、
,問是否存在點(diǎn)
,使
在
處的切線與
在
處的切線平行?若存在,求出
的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于函數(shù)
,若在定義域內(nèi)存在實(shí)數(shù)
,滿足
,則稱
為“局部奇函數(shù)”.
(Ⅰ)已知二次函數(shù)
,試判斷
是否為“局部奇函數(shù)”?并說明理由;
(Ⅱ)若
是定義在區(qū)間
上的“局部奇函數(shù)”,求實(shí)數(shù)
的取值范圍;
(Ⅲ)若
為定義域
上的“局部奇函數(shù)”,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
.
(1)若x=
時(shí),
取得極值,求
的值;
(2)若
在其定義域內(nèi)為增函數(shù),求
的取值范圍;
(3)設(shè)
,當(dāng)
=-1時(shí),證明
在其定義域內(nèi)恒成立,并證明
(
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/05/0/1klih2.png" style="vertical-align:middle;" />,若
在
上為增函數(shù),則稱
為“一階比增函數(shù)”.
(Ⅰ) 若
是“一階比增函數(shù)”,求實(shí)數(shù)
的取值范圍;
(Ⅱ) 若
是“一階比增函數(shù)”,求證:
,
;
(Ⅲ)若
是“一階比增函數(shù)”,且
有零點(diǎn),求證:
有解.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com