【題目】近期,西安公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設(shè)置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統(tǒng)計了活動剛推出一周內(nèi)每一天使用掃碼支付的人次,
表示活動推出的天數(shù),
表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計數(shù)據(jù)如表下所示:
![]()
根據(jù)以上數(shù)據(jù),繪制了散點圖.
![]()
(1)根據(jù)散點圖判斷,在推廣期內(nèi),
與
(
均為大于零的常數(shù)),哪一個適宜作為掃碼支付的人次
關(guān)于活動推出天數(shù)
的回歸方程類型?(給出判斷即可,不必說明理由);
(2)根據(jù)(1)的判斷結(jié)果及表1中的數(shù)據(jù),建立
與
的回歸方程,并預(yù)測活動推出第8天使用掃碼支付的人次;
(3)推廣期結(jié)束后,車隊對乘客的支付方式進行統(tǒng)計,結(jié)果如下表:
![]()
西安公交六公司車隊為緩解周邊居民出行壓力,以
萬元的單價購進了一批新車,根據(jù)以往的經(jīng)驗可知,每輛車每個月的運營成本約為
萬元.已知該線路公交車票價為
元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受
折優(yōu)惠,掃碼支付的乘客隨機優(yōu)惠,根據(jù)統(tǒng)計結(jié)果得知,使用掃碼支付的乘客中有
的概率享受
折優(yōu)惠,有
的概率享受
折優(yōu)惠,有
的概率享受
折優(yōu)惠.預(yù)計該車隊每輛車每個月有
萬人次乘車,根據(jù)所給數(shù)據(jù)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,在不考慮其它因素的條件下,按照上述收費標準,假設(shè)這批車需要
(
)年才能開始盈利,求
的值.
參考數(shù)據(jù):
|
|
|
|
|
|
|
|
|
|
其中其中
,
,
參考公式:對于一組數(shù)據(jù)
,
,
,
,其回歸直線
的斜率和截距的最小二乘估計公式分別為:
,
.
【答案】(1)
(2)
,3470(3)7
【解析】
(1)由散點圖可知,更接近指數(shù)增長,所以
適宜作為掃碼支付的人次
關(guān)于活動推出天數(shù)
的回歸方程類型.
(2)根據(jù)(1)的判斷結(jié)果
兩邊取對數(shù)得
,則
兩者線性相關(guān),根據(jù)已知條件求出
得回歸方程,進而得到y關(guān)于x的回歸方程,再令
,求預(yù)測值
(3)設(shè)一名乘客一次乘車的費用為
元,根據(jù)題意
得可能取值為:1.4、1.6、1.8、2,求出分布列,進而求得期望,然后再建立不等式求解.
(1)根據(jù)散點圖判斷,在推廣期內(nèi),
(
均為大于零的常數(shù)),適宜作為掃碼支付的人次
關(guān)于活動推出天數(shù)
的回歸方程類型.
(2)根據(jù)(1)的判斷結(jié)果
,
兩邊取對數(shù)得
,
其中
,
,
,
,
,
所以
。
所以
。
當(dāng)
時,
。
所以活動推出第8天使用掃碼支付的人次3470人.
(3)設(shè)一名乘客一次乘車的費用為
元,
根據(jù)題意
得可能取值為:1.4、1.6、1.8、2
,
,
。
假設(shè)這批車需要
(
)年才能開始盈利,
則
,
解得
。
所以需要7年才能開始盈利.。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形
中,
,
,
為
的中點,點
,
分別在線段
,
上運動(其中
不與
,
重合,
不與
,
重合),且
,沿
將
折起,得到三棱錐
,則三棱錐
體積的最大值為__________;當(dāng)三棱錐
體積最大時,其外接球的表面積的值為_______________.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列
(
)的各項均為正整數(shù),且
.若對任意
,存在正整數(shù)
使得
,則稱數(shù)列
具有性質(zhì)
.
(1)判斷數(shù)列
與數(shù)列
是否具有性質(zhì)
;(只需寫出結(jié)論)
(2)若數(shù)列
具有性質(zhì)
,且
,
,
,求
的最小值;
(3)若集合
,且
(任意
,
).求證:存在
,使得從
中可以選取若干元素(可重復(fù)選取)組成一個具有性質(zhì)
的數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.(
是自然對數(shù)的底數(shù))
(1)求
的單調(diào)遞減區(qū)間;
(2)若函數(shù)
,證明
在
上只有兩個零點.(參考數(shù)據(jù):
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽籺,俗稱“粽子”,古稱“角黍”,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀念戰(zhàn)國時期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球體積的最大值為____.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年春節(jié)期間,某服裝超市舉辦了一次有獎促銷活動,消費每超過600元(含600元),均可抽獎一次,抽獎方案有兩種,顧客只能選擇其中的一種.
方案一:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,一次性摸出3個球,其中獎規(guī)則為:若摸到3個紅球,享受免單優(yōu)惠;若摸出2個紅球則打6折,若摸出1個紅球,則打7折;若沒摸出紅球,則不打折.
方案二:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.
(1)若兩個顧客均分別消費了600元,且均選擇抽獎方案一,試求兩位顧客均享受免單優(yōu)惠的概率;
(2)若某顧客消費恰好滿1000元,試從概率的角度比較該顧客選擇哪一種抽獎方案更合算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,函數(shù)
,函數(shù)![]()
(1)當(dāng)函數(shù)
在
時為減函數(shù),求a的范圍;
(2)若a=e(e為自然對數(shù)的底數(shù));
①求函數(shù)g(x)的單調(diào)區(qū)間;
②證明:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系
中,直線
的參數(shù)方程為
(
為參數(shù)).以坐標原點為極點,
軸的非負半軸為極軸且取相同的單位長度建立極坐標系,圓
的極坐標方程為
.
(1)求直線
的普通方程與圓
的直角坐標方程;
(2)設(shè)動點
在圓
上,動線段
的中點
的軌跡為
,
與直線
交點為
,且直角坐標系中,
點的橫坐標大于
點的橫坐標,求點
的直角坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,函數(shù)F(x)=min{2|x1|,x22ax+4a2},
其中min{p,q}=![]()
(Ⅰ)求使得等式F(x)=x22ax+4a2成立的x的取值范圍;
(Ⅱ)(ⅰ)求F(x)的最小值m(a);
(ⅱ)求F(x)在區(qū)間[0,6]上的最大值M(a).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com