【題目】隨機(jī)抽取了40輛汽車在經(jīng)過路段上某點(diǎn)時(shí)的車速(km/h),現(xiàn)將其分成六段:
,
,
,
,
,
,后得到如圖所示的頻率分布直方圖.
![]()
(Ⅰ)現(xiàn)有某汽車途經(jīng)該點(diǎn),則其速度低于80km/h的概率約是多少?
(Ⅱ)根據(jù)直方圖可知,抽取的40輛汽車經(jīng)過該點(diǎn)的平均速度約是多少?
(Ⅲ)在抽取的40輛且速度在
(km/h)內(nèi)的汽車中任取2輛,求這2輛車車速都在
(km/h)內(nèi)的概率.
【答案】(I)
;(II)
(km/h);(III)
.
【解析】試題分析:(Ⅰ)
表示80
左邊小矩形的和;(Ⅱ)根據(jù)頻率分布直方圖計(jì)算平均車速就是每個(gè)小矩形的中點(diǎn)值乘以本組的頻率(本組小矩形的面積)和;(Ⅲ)分別計(jì)算車速在
和
的車輛,然后再分別編號(hào),列舉所有抽取2輛車的基本事件,再計(jì)算兩輛車都落在區(qū)間
的基本事件的個(gè)數(shù),相除就是概率.
試題解析:(Ⅰ)速度低于80km/h的概率約為:
.
(Ⅱ)這40輛小型車輛的平均車速為:
(km/h),
(Ⅲ)車速在
內(nèi)的有2輛,記為
車速在
內(nèi)的有4輛,記為
,從中抽2輛,抽法為
共15種,
其中車速都在
內(nèi)的有6種,故所求概率
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
(
),定義
.
(1)求函數(shù)
的極值
(2)若
,且存在
使
,求實(shí)數(shù)
的取值范圍;
(3)若
,試討論函數(shù)
(
)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(Ⅰ)若
,求
在點(diǎn)
處的切線方程;
(Ⅱ)討論函數(shù)
的單調(diào)性;
(Ⅲ)若
存在兩個(gè)極值點(diǎn)
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
與圓
,點(diǎn)
在圓
上,點(diǎn)
在圓
上.
(1)求
的最小值;
(2)直線
上是否存在點(diǎn)
,滿足經(jīng)過點(diǎn)
由無數(shù)對(duì)相互垂直的直線
和
,它們分別與圓
和圓
相交,并且直線
被圓
所截得的弦長(zhǎng)等于直線
被圓
所截得的弦長(zhǎng)?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,
是邊長(zhǎng)為
的棱形,且
分別是
的中點(diǎn).
(1)證明:
平面
;
(2)若二面角
的大小為
,求點(diǎn)
到平面
的距離.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的三個(gè)內(nèi)角A、B、C的對(duì)邊分別是a,b,c,給出下列命題: ①若sinBcosC>﹣cosBsinC,則△ABC一定是鈍角三角形;
②若sin2A+sin2B=sin2C,則△ABC一定是直角三角形;
③若bcosA=acosB,則△ABC為等腰三角形;
④在△ABC中,若A>B,則sinA>sinB;
其中正確命題的序號(hào)是 . (注:把你認(rèn)為正確的命題的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
與直線
相切.
(1)若直線
與圓
交于
兩點(diǎn),求
;
(2)設(shè)圓
與
軸的負(fù)半軸的交點(diǎn)為
,過點(diǎn)
作兩條斜率分別為
的直線交圓
于
兩點(diǎn),且
,試證明直線
恒過一定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的是( )
A.單位向量都相等
B.若
與
是共線向量,
與
是共線向量,則
與
是共線向量
C.|
+
|=|
﹣
|,則
=0
D.若
與
是單位向量,則
=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,點(diǎn)A(1,1),B(0,﹣2),C(4,2),D為AB的中點(diǎn),DE∥BC. (Ⅰ)求BC邊上的高所在直線的方程;
(Ⅱ)求DE所在直線的方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com