【題目】在送醫下鄉活動中,某醫院安排3名男醫生和2名女醫生到三所鄉醫院工作,每所醫院至少安排一名醫生,且女醫生不安排在同一鄉醫院工作,則不同的分 配方法總數為( )
A.78
B.114
C.108
D.120
【答案】B
【解析】解決這個問題可以分為兩步,第一步先將兩名女醫生安排到兩所醫院中,此是個排列問題,第二步再安排三名男醫生,此步中要分成三類,第一類三名男醫生都在第三所醫院,第二類把三名男醫生分成兩組,其中一級在第三所醫院,另一組在另外兩個醫院中的一個,第三類三名男醫生分去三個醫院,這是一個全排列問題.
第一步先安排兩名女醫生,共有
種安排方法
第二步安排三名男醫生,可分為三類,
第一類若三名男醫生在一起,則只能去第二所醫院,一種安排方法,
第二類,將三名男醫生分為兩組,共
種分法,然后安排一組去第三所醫院,共
種安排方法,另一組去另外兩所醫院有
種安排方法,
第三類,三名男醫生分去三所醫院,這是一個全排列,共有
種安排方法
綜上,不同的分配方法總數為![]()
故選B
科目:高中數學 來源: 題型:
【題目】某高校共有學生15 000人,其中男生10 500人,女生4500人.為調查該校學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學生每周平均體育運動時間的樣本數據(單位:小時).
(1)應收集多少位女生的樣本數據?
(2)根據這300個樣本數據,得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數據的分組區間為:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估計該校學生每周平均體育運動時間超過4小時的概率.
(3)在樣本數據中,有60位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別列聯表,并判斷是否有95%的把握認為“該校學生的每周平均體育運動時間與性別有關”.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系
中,以坐標原點為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
,過點
的直線
的參數方程為
(
為參數),
與
交于
兩點
(1) 求
的直角坐標方程和
的普通方程;
(2) 若
,
,
成等比數列,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】北京某附屬中學為了改善學生的住宿條件,決定在學校附近修建學生宿舍,學校總務辦公室用1000萬元從政府購得一塊廉價土地,該土地可以建造每層1000平方米的樓房,樓房的每平方米建筑費用與建筑高度有關,樓房每升高一層,整層樓每平方米建筑費用提高0.02萬元,已知建筑第5層樓房時,每平方米建筑費用為0.8萬元.
(1)若學生宿舍建筑為
層樓時,該樓房綜合費用為
萬元,綜合費用是建筑費用與購地費用之和),寫出
的表達式;
(2)為了使該樓房每平方米的平均綜合費用最低,學校應把樓層建成幾層?此時平均綜合費用為每平方米多少萬元?
【答案】(1)
;(2)學校應把樓層建成
層,此時平均綜合費用為每平方米
萬元
【解析】
由已知求出第
層樓房每平方米建筑費用為
萬元,得到第
層樓房建筑費用,由樓房每升高一層,整層樓建筑費用提高
萬元
,然后利用等差數列前
項和求建筑
層樓時的綜合費用
;
設樓房每平方米的平均綜合費用為
,則
,然后利用基本不等式求最值.
解:
由建筑第5層樓房時,每平方米建筑費用為
萬元,
且樓房每升高一層,整層樓每平方米建筑費用提高
萬元,
可得建筑第1層樓房每平方米建筑費用為:
萬元.
建筑第1層樓房建筑費用為:
萬元
.
樓房每升高一層,整層樓建筑費用提高:
萬元
.
建筑第x層樓時,該樓房綜合費用為:
.
;
設該樓房每平方米的平均綜合費用為
,
則:
,
當且僅當
,即
時,上式等號成立.
學校應把樓層建成10層,此時平均綜合費用為每平方米
萬元.
【點睛】
本題考查簡單的數學建模思想方法,訓練了等差數列前n項和的求法,訓練了利用基本不等式求最值,是中檔題.
【題型】解答題
【結束】
20
【題目】已知
.
(1)求函數
的最小正周期和對稱軸方程;
(2)若
,求
的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
在
上是增函數,則
的取值范圍是( )
A.
B.
C.
D. ![]()
【答案】C
【解析】
若函數f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數,則x2﹣ax+3a>0且f(2)>0,根據二次函數的單調性,我們可得到關于a的不等式,解不等式即可得到a的取值范圍.
若函數f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數,
則當x∈[2,+∞)時,
x2﹣ax+3a>0且函數f(x)=x2﹣ax+3a為增函數
即
,f(2)=4+a>0
解得﹣4<a≤4
故選:C.
【點睛】
本題考查的知識點是復合函數的單調性,二次函數的性質,對數函數的單調區間,其中根據復合函數的單調性,構造關于a的不等式,是解答本題的關鍵.
【題型】單選題
【結束】
10
【題目】圓錐的高
和底面半徑
之比
,且圓錐的體積
,則圓錐的表面積為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有0,1,2,3,4,5六個數字.
(1)用所給數字能夠組成多少個四位數?
(2)用所給數字可以組成多少個沒有重復數字的五位數?
(3)用所給數字可以組成多少個沒有重復數字且比3142大的數?(最后結果均用數字作答)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·新課標1卷)已知橢圓E的中心為坐標原點,離心率為
, E的右焦點與拋物線C:y2=8x的焦點重合,A,B是C的準線與E的兩個交點,則|AB|= ( )
A.3
B.6
C.9
D.12
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某服裝店為慶祝開業“三周年”,舉行為期六天的促銷活動,規定消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,第五天該服裝店經理對前五天中參加抽獎活動的人數進行統計,
表示第
天參加抽獎活動的人數,得到統計表格如下:
| 1 | 2 | 3 | 4 | 5 |
| 4 | 6 | 10 | 23 | 22 |
(1)若
與
具有線性相關關系,請根據上表提供的數據,用最小二乘法求出
關于
的線性回歸方程
;
(2)預測第六天的參加抽獎活動的人數(按四舍五入取到整數).
參考公式與參考數據:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】今年五一小長假,以洪崖洞、李子壩輕軌、長江索道、一棵樹觀景臺為代表的網紅景點,把重慶推上全國旅游人氣搒的新高.外地客人小胖準備游覽上面這
個景點,他游覽每一個景臺的概率都是
,且他是否游覽哪個景點互不影響.設
表示小胖離開重慶時游覽的景點數與沒有游覽的景點數之差的絕對值.
(1)記“函數
是實數集
上的偶函數”為事件
,求事件
的概率.
(2)求
的分布列及數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com