【題目】已知函數
.
(1)若函數
在其定義域內單調遞增,求實數
的最大值;
(2)若存在正實數對
,使得當
時,
能成立,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知拋物線
的內接等邊三角形
的面積為
(其中
為坐標原點).
(1)試求拋物線
的方程;
(2)已知點
兩點在拋物線
上,
是以點
為直角頂點的直角三角形.
①求證:直線
恒過定點;
②過點
作直線
的垂線交
于點
,試求點
的軌跡方程,并說明其軌跡是何種曲線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,已知橢圓
(
),圓
(
),若圓
的一條切線
與橢圓
相交于
兩點.
(1)當
,
時,若點
都在坐標軸的正半軸上,求橢圓
的方程;
(2)若以
為直徑的圓經過坐標原點
,探究
是否滿足
,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,曲線
的參數方程為
(
為參數).以坐標原點為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為![]()
(1)在曲線
上任取一點
,連接
,在射線
上取一點
,使
,求
點軌跡的極坐標方程;
(2)在曲線
上任取一點
,在曲線
上任取一點
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱
中,
是邊長為2的等邊三角形,
,
,
.
![]()
(1)證明:平面
平面
;
(2)
,
分別是
,
的中點,
是線段
上的動點,若二面角
的平面角的大小為
,試確定點
的位置.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線
的焦點到準線的距離為
,直線
與拋物線
交于
,
兩點,過這兩點分別作拋物線
的切線,且這兩條切線相交于點
.
(1)若點
的坐標為
,求
的值;
(2)設線段
的中點為
,過
的直線
與線段
為直徑的圓相切,切點為
,且直線
與拋物線
交于
,
兩點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線
的焦點到準線的距離為
,直線
與拋物線
交于
,
兩點,過這兩點分別作拋物線
的切線,且這兩條切線相交于點
.
(1)若點
的坐標為
,求
的值;
(2)設線段
的中點為
,過
的直線
與線段
為直徑的圓相切,切點為
,且直線
與拋物線
交于
,
兩點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,曲線
的參數方程是
(
是參數).以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,直線
的極坐標方程為
,其傾斜角為
.
(Ⅰ)證明直線
恒過定點
,并寫出直線
的參數方程;
(Ⅱ)在(Ⅰ)的條件下,若直線
與曲線
交于
,
兩點,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com