已知函數(shù)
,
,其中
且
.
(Ⅰ) 當(dāng)
,求函數(shù)
的單調(diào)遞增區(qū)間;
(Ⅱ)若
時,函數(shù)
有極值,求函數(shù)
圖象的對稱中心的坐標(biāo);
(Ⅲ)設(shè)函數(shù)
(
是自然對數(shù)的底數(shù)),是否存在a使
在
上為減函數(shù),若存在,求實數(shù)a的范圍;若不存在,請說明理由.
(1)
單調(diào)增區(qū)間是
;(2)對稱中心坐標(biāo)為
;(3)符合條件的
滿足
.
解析試題分析:本題綜合考查函數(shù)與導(dǎo)數(shù)及運用導(dǎo)數(shù)求單調(diào)區(qū)間、極值等數(shù)學(xué)知識和方法,突出考查綜合運用數(shù)學(xué)知識和方法分析問題解決問題的能力.第一問,先將
代入,得到
的表達(dá)式,對其求導(dǎo),令
大于0,解不等式,得出增區(qū)間;第二問,由于當(dāng)
時函數(shù)
有極值,所以
是
的根,代入得出
的值,代入
中得到具體解析式,可以看出
的對稱中心,而
到
圖像是經(jīng)過平移得到的,所以經(jīng)過平移,得到對稱中心坐標(biāo),假設(shè)存在
,試試看能不能求出來,對
求導(dǎo),得到
的兩個根分別為1和
,通過討論兩根的大小,出現(xiàn)3種情況在每一種情況下,討論單調(diào)性,最后總結(jié)出符合題意的
的取值范圍.
試題解析:(Ⅰ)當(dāng)
,
,
設(shè)
,即
,
所以
或
,
單調(diào)增區(qū)間是
.
(Ⅱ)當(dāng)
時,函數(shù)
有極值,
所以
,且
,即
,
所以
,
所以
的圖像可由
的圖像向下平移16個單位長度得到,
而
的圖像關(guān)于
對稱,
所以函數(shù)
的圖像的對稱中心坐標(biāo)為
.
(Ⅲ)假設(shè)存在
使
在
上為減函數(shù),
,
(1)當(dāng)
時,
,
在定義域上為增函數(shù),不合題意;
(2)當(dāng)
時,由
得:
,
在
上為增函數(shù),則在
上也為增函數(shù),也不合題意;
(3)當(dāng)
時,由
得:
,若
,
無解,則
,
因為
在
上為減函數(shù),則
在
上為減函數(shù),
在
上為減函數(shù),且
,則
.由
,得
.
綜上所述,符合條件的
滿足
.
考點:1.利用導(dǎo)數(shù)判斷函數(shù)
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(其中
,e是自然對數(shù)的底數(shù)).
(Ⅰ)若
,試判斷函數(shù)
在區(qū)間
上的單調(diào)性;
(Ⅱ)若
,當(dāng)
時,試比較
與2的大小;
(Ⅲ)若函數(shù)
有兩個極值點
,
(
),求k的取值范圍,并證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知a為實數(shù),x=1是函數(shù)
的一個極值點。
(Ⅰ)若函數(shù)
在區(qū)間
上單調(diào)遞減,求實數(shù)m的取值范圍;
(Ⅱ)設(shè)函數(shù)
,對于任意
和
,有不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某市在市內(nèi)主干道北京路一側(cè)修建圓形休閑廣場.如圖,圓形廣場的圓心為O,半徑為100m,并與北京路一邊所在直線
相切于點M.A為上半圓弧上一點,過點A作
的垂線,垂足為B.市園林局計劃在△ABM內(nèi)進(jìn)行綠化.設(shè)△ABM的面積為S(單位:
),
(單位:弧度).![]()
(I)將S表示為
的函數(shù);
(II)當(dāng)綠化面積S最大時,試確定點A的位置,并求最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(其中
為常數(shù)).
(I)當(dāng)
時,求函數(shù)
的最值;
(Ⅱ)討論函數(shù)
的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,點
為一定點,直線
分別與函數(shù)
的圖象和
軸交于點
,
,記
的面積為
.
(1)當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)
時, 若
,使得
, 求實數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com