(本題滿分14分)
如圖1,在平面內(nèi),ABCD是
的菱形,ADD``A1和CD D`C1都是正方形.將兩個正方形分別沿AD,CD折起,使D``與D`重合于點(diǎn)D1 .設(shè)直線l過點(diǎn)B且垂直于菱形ABCD所在的平面,點(diǎn)E是直線l上的一個動點(diǎn),且與點(diǎn)D1位于平面ABCD同側(cè)(圖2).
![]()
(Ⅰ) 設(shè)二面角E – AC – D1的大小為q,若
£ q £
,求線段BE長的取值范圍;
(Ⅱ)在線段
上存在點(diǎn)
,使平面
平面
,求
與BE之間滿足的關(guān)系式,并證明:當(dāng)0 < BE < a時,恒有
<
1.
(方法1)設(shè)菱形
的中心為O,以O為原點(diǎn),對角線AC,BD所在直線分別為x,y軸,建立空間直角坐標(biāo)系如圖1.設(shè)BE = t (t > 0) .
![]()
(Ⅰ)![]()
![]()
設(shè)平面
的法向量為
,則
3分
設(shè)平面
的法向量為
,
則
4分
設(shè)二面角
的大小為
,則
, 6分
∵cosq Î
, ∴![]()
![]()
,
解得
£ t £
. 所以BE的取值范圍是
[
,
]. 8分
(Ⅱ) 設(shè)
,則![]()
![]()
由平面
平面
,得
平面
,![]()
,化簡得:
(t ¹ a),即所求關(guān)系式:![]()
(BE ¹ a).
∴當(dāng)0< t < a時,
< 1. 即:當(dāng)0 < BE < a時,恒有
< 1.
14分
(方法2)
(Ⅰ)如圖2,連接D1A,D1C,EA,EC,D1O,EO,
![]()
∵ D1A= D1C,所以,D1O⊥AC,同理,EO⊥AC,
∴
是二面角
的平面角.設(shè)其為q. 3分
連接D1E,在△OD1E中,設(shè)BE = t (t > 0)則有:
OD1
=
,OE =
,D1E =
,
∴
.
6分
∵cosq Î
, ∴![]()
![]()
,
解得
£ t £
. 所以BE的取值范圍是
[
,
].
所以當(dāng)條件滿足時,
£ BE £
.
8分
(Ⅱ)當(dāng)點(diǎn)E在平面A1D1C1上方時,連接A1C1,則A1C1∥AC,
![]()
連接EA1,EC1,設(shè)A1C1的中點(diǎn)為O1,則O1在平面BDD1內(nèi),過O1作O1P∥OE交D1E于點(diǎn)P,則平面
平面
.
作平面BDD1如圖3.過D1作D1B1∥BD交于l點(diǎn)B1,設(shè)EO交D1B1于點(diǎn)Q.
因?yàn)镺1P∥OE,所以
=
=
,
由Rt△EB1Q∽RtEBO,得
,解得QB1 =
,得
=
, 12分
當(dāng)點(diǎn)E在平面A1D1C1下方時,同理可得,上述結(jié)果仍然成立. 13分
∴有
=
(BE ¹a),∴當(dāng)0 < t < a時,
<
1. 14分
【解析】略
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| π |
| 3 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,
為
上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若A
B=[0,3],求實(shí)數(shù)m的值
(Ⅱ)若A
CRB,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題
(本題滿分14分)
已知點(diǎn)
是⊙
:
上的任意一點(diǎn),過
作
垂直
軸于
,動點(diǎn)
滿足
。
(1)求動點(diǎn)
的軌跡方程;
(2)已知點(diǎn)
,在動點(diǎn)
的軌跡上是否存在兩個不重合的兩點(diǎn)
、
,使
(O是坐標(biāo)原點(diǎn)),若存在,求出直線
的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知函數(shù)
.
(1)求函數(shù)
的定義域;
(2)判斷
的奇偶性;
(3)方程
是否有根?如果有根
,請求出一個長度為
的區(qū)間
,使![]()
![]()
;如果沒有,請說明理由?(注:區(qū)間的長度為
).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com