【題目】設橢圓
的左、右焦點分別為
,
,上頂點為
,過點
與
垂直的直線交
軸負半軸于點
,且
.
(1)求橢圓
的方程;
(2)過橢圓
的右焦點
作斜率為1的直線
與橢圓
交于
兩點,試在
軸上求一點
,使得以
,
為鄰邊的平行四邊形是菱形.
科目:高中數(shù)學 來源: 題型:
【題目】某購物網站對在7座城市的線下體驗店的廣告費指出
萬元和銷售額
萬元的數(shù)據統(tǒng)計如下表:
城市 | A | B | C | D | E | F | G |
廣告費支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
銷售額 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)若用線性回歸模型擬合y與x關系,求y關于x的線性回歸方程.
(2)若用對數(shù)函數(shù)回歸模型擬合y與x的關系,可得回歸方程
,經計算對數(shù)函數(shù)回歸模型的相關指數(shù)約為0.95,請說明選擇哪個回歸模型更合適,并用此模型預測A城市的廣告費用支出8萬元時的銷售額.
參考數(shù)據:
,
,
,
,
,
.
參考公式:![]()
,
相關指數(shù):
(注意:
與
公式中的相似之處)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形
中,
,
,
,
,
,點
在
上,且
,將
沿
折起,使得平面
平面
(如圖),
為
中點.
(Ⅰ)求證:
平面
;
(Ⅱ)求四棱錐
的體積;
(Ⅲ)在線段
上是否存在點
,使得
平面
?若存在,求
的值;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題:
①若將一組樣本數(shù)據中的每個數(shù)據都加上同一個常數(shù)后,則樣本的方差不變;
②在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高;
③若兩個變量間的線性相關關系越強,則相關系數(shù)
的值越接近于1;
④對分類變量
與
的隨機變量
的觀測值
來說,
越小,判斷“
與
有關系”的把握越大.
其中正確的命題序號是( )
A.①②③B.①②C.①③④D.②③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
的左、右焦點分別為
、
,橢圓的離心率為
,過橢圓
的左焦點
,且斜率為
的直線
,與以右焦點
為圓心,半徑為
的圓
相切.
(1)求橢圓
的標準方程;
(2)線段
是橢圓
過右焦點
的弦,且
,求
的面積的最大值以及取最大值時實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l:kx-y+1+2k=0(k∈R).
(1)證明:直線l過定點;
(2)若直線不經過第四象限,求k的取值范圍;
(3)若直線l交x軸負半軸于A,交y軸正半軸于B,△AOB的面積為S(O為坐標原點),求S的最小值并求此時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某民航部門統(tǒng)計的2019年春運期間12個城市售出的往返機票的平均價格以及相比上年同期變化幅度的數(shù)據統(tǒng)計圖表如圖所示,根據圖表,下面敘述不正確的是( )
![]()
A. 同去年相比,深圳的變化幅度最小且廈門的平均價格有所上升
B. 天津的平均價格同去年相比漲幅最大且2019年北京的平均價格最高
C. 2019年平均價格從高到低居于前三位的城市為北京、深圳、廣州
D. 同去年相比,平均價格的漲幅從高到低居于前三位的城市為天津、西安、南京
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
的左右焦點分別為
,
是橢圓短軸的一個頂點,且
是面積為
的等腰直角三角形.
(1)求橢圓
的標準方程;
(2)已知直線
:
與橢圓
交于不同的
,
兩點,若橢圓
上存在點
,使得四邊形
恰好為平行四邊形,求直線
與坐標軸圍成的三角形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線
的參數(shù)方程是
(
為參數(shù)),以坐標原點為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程是
.
(1)求曲線
與
交點的極坐標;
(2)
、
兩點分別在曲線
與
上,當
最大時,求
的面積(
為坐標原點)
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com