已知函數(shù)
,
,其中
.
(Ⅰ)討論
的單調(diào)性;
(Ⅱ)若
在其定義域內(nèi)為增函數(shù),求正實數(shù)
的取值范圍;
(Ⅲ)設函數(shù)
,當
時,若
,
,總有
成立,求實數(shù)
的取值范圍.
(1)見解析;(2)
;(3)
.
解析試題分析:(1)求出
,然后根據(jù)
的符號討論
的單調(diào)性;(2)求出
,然后將條件轉(zhuǎn)化為
,
.然后分離參數(shù)得到
,然后用基本不等式求得
即可得到
的取值范圍;(3)將“若
,
,總有
成立”轉(zhuǎn)化成“
在
上的最大值不小于
在
上的最大值”即可求得
的取值范圍.
試題解析:(1)
的定義域為
,且
,
①當
時,
,
在
上單調(diào)遞增;
②當
時,由
,得
;由
,得
;
故
在
上單調(diào)遞減,在
上單調(diào)遞增.
(2)
,
的定義域為
.
.
因為
在其定義域內(nèi)為增函數(shù),所以
,
.
.
而
,當且僅當
時取等號,所以
.
(3)當
時,
,
.
由
得
或
.
當
時,
;當
時,
.
所以在
上,
.
而“
,
,總有
成立”等價于“
在
上的最大值不小于
在
上的最大值”.
而
在
上的最大值為
,
所以有
.
所以實數(shù)
的取值范圍是
.
考點:1.導數(shù)求函數(shù)的單調(diào)性;2.分離參數(shù)解函數(shù)恒成立問題;3.轉(zhuǎn)化思想.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
,其中
.
(1)若
,求曲線
在點
處的切線方程;
(2)求函數(shù)的極大值和極小值,若函數(shù)
有三個零點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
,
(1)求
在
處切線方程;
(2)求證:函數(shù)
在區(qū)間
上單調(diào)遞減;
(3)若不等式
對任意的
都成立,求實數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)![]()
(Ⅰ)當
時,求曲線
在點
處的切線方程;
(Ⅱ)求
的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)
沒有零點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
若函數(shù)
在x = 0處取得極值.
(1) 求實數(shù)
的值;
(2) 若關于x的方程
在區(qū)間[0,2]上恰有兩個不同的實數(shù)根,求實數(shù)
的取值范圍;
(3) 證明:對任意的自然數(shù)n,有
恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
,其中
是自然對數(shù)的底數(shù).
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間和極值;
(Ⅱ)若函數(shù)
對任意
滿足
,求證:當
時,
;
(Ⅲ)若
,且
,求證:![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)![]()
(1)若函數(shù)
在點
處的切線方程為
,求
的值;
(2)若
,函數(shù)
在區(qū)間
內(nèi)有唯一零點,求
的取值范圍;
(3)若對任意的
,均有
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
,![]()
⑴求證函數(shù)
在
上的單調(diào)遞增;
⑵函數(shù)
有三個零點,求
的值;
⑶對
恒成立,求a的取值范圍。
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com