【題目】設函數f(x)=x2﹣ax+a+3,g(x)=ax﹣2a.
(1)若函數h(x)=f(x)﹣g(x)在[﹣2,0]上有兩個零點,求實數a的取值范圍;
(2)若存在x0∈R,使得f(x0)≤0與g(x0)≤0同時成立,求實數a的最小值.
【答案】
(1)
解:由已知,h(x)=f(x)﹣g(x)=x2﹣2ax+3a+3=0在[﹣2,0]上有兩個不同的實數解,
所以
,
即
,
解得
,
(2)
解:由已知,
,
(1)+(2)得
,得a≥3,
再由(2)得x0≤2,由(1)得
,得x0>1,
于是,問題等價于:a≥3,且存在x0∈(1,2]滿足
,
令t=x0﹣1∈(0,1],
,
因為
在(0,1]上單調遞減,
所以φ(t)≥φ(1)=7,即a≥7,
故實數a的最小值為7.
【解析】(1)由h(x)在區間內的兩個零點,結合圖形,得到需要滿足的條件.(2)由f(x0)≤0與g(x0)≤0同時成立,得到得a≥3,可將問題轉化為最值問題,由單調性得到最值,即可.
科目:高中數學 來源: 題型:
【題目】精準扶貧是鞏固溫飽成果、加快脫貧致富、實現中華民族偉大“中國夢”的重要保障.某地政府在對某鄉鎮企業實施精準扶貧的工作中,準備投入資金將當地農產品進行二次加工后進行推廣促銷,預計該批產品銷售量
萬件(生產量與銷售量相等)與推廣促銷費
萬元之間的函數關系為
(其中推廣促銷費不能超過5千元).已知加工此農產品還要投入成本
萬元(不包括推廣促銷費用),若加工后的每件成品的銷售價格定為
元/件.
(1)試將該批產品的利潤
萬元表示為推廣促銷費
萬元的函數;(利潤=銷售額-成本-推廣促銷費)
(2)當推廣促銷費投入多少萬元時,此批產品的利潤最大?最大利潤為多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設圓
的圓心為
,直線
過點
且與
軸不重合,
交圓
于
兩點,過
作
的平行線交
于點
.
(1)證明:
為定值,并寫出點
的軌跡方程;
(2)設點
的軌跡為曲線
,直線
交
于
兩點,
為坐標原點,求
面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若學生
一天學習數學超過兩個小時的概率為
(每天是相互獨立沒有影響的),一周內至少有四天每天學習數學超過兩個小時,就說該生本周數學學習是投入的.
(Ⅰ)①設學生
本周一天學習數學超過兩個小時的天數為
求
的分布列與數學期望![]()
②求學生
本周數學學習投入的概率.
(Ⅱ)為了研究學生學習數學的投入程度和本周數學周練成績的關系,隨機在年級中抽取了
名學生進行調查,所得數據如下表所示:
成績理想 | 成績不太理想 | 合計 | |
數學學習投入 | 20 | 10 | 30 |
數學學習不太投入 | 10 | 15 | 25 |
合計 | 30 | 25 | 55 |
根據上述數據能否有
的把握認為“學生學習數學的投入程度和本周數學成績兩事件有關”?
附:![]()
|
|
|
|
|
|
|
|
|
|
| 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
對一切實數
都有
成立,且
.
(1)求
的值;
(2)求
的解析式;
(3)已知
,設
:當
時,不等式
恒成立;Q:當
時,
是單調函數。如果滿足
成立的
的集合記為
,滿足Q成立的
的集合記為
,求A∩(CRB)(
為全集).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD的底面ABCD為菱形,且∠ABC=60°,
AB=PC=2,PA=PB=
.![]()
(1)求證:平面PAB⊥平面ABCD;
(2)設H是PB上的動點,求CH與平面PAB所成最大角的正切值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com