【題目】斐波那契數列{an}滿足:
.若將數列的每一項按照下圖方法放進格子里,每一小格子的邊長為1,記前n項所占的格子的面積之和為Sn , 每段螺旋線與其所在的正方形所圍成的扇形面積為cn , 則下列結論錯誤的是( ) ![]()
A.![]()
B.a1+a2+a3+…+an=an+2﹣1
C.a1+a3+a5+…+a2n﹣1=a2n﹣1
D.4(cn﹣cn﹣1)=πan﹣2an+1
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx+a(x﹣1),其中a∈R. (Ⅰ) 當a=﹣1時,求證:f(x)≤0;
(Ⅱ) 對任意t≥e,存在x∈(0,+∞),使tlnt+(t﹣1)[f(x)+a]>0成立,求a的取值范圍.
(其中e是自然對數的底數,e=2.71828…)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖為中國傳統智力玩具魯班鎖,起源于古代漢族建筑中首創的榫卯結構,這種三維的拼插器具內部的凹凸部分(即榫卯結構)嚙合,外觀看是嚴絲合縫的十字立方體,其上下、左右、前后完全對稱,六根完全相同的正四棱柱分成三組,經90°榫卯起來.現有一魯班鎖的正四棱柱的底面正方形邊長為1,欲將其放入球形容器內(容器壁的厚度忽略不計),若球形容器表面積的最小值為30π,則正四棱柱體的高為( ) ![]()
A.![]()
B.![]()
C.![]()
D.5
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=xlnx,g(x)=x+
(x>0)都在x=x0處取得最小值.
(1)求f(x0)﹣g(x0)的值.
(2)設函數h(x)=f(x)﹣g(x),h(x)的極值點之和落在區間(k,k+1),k∈N,求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為評估兩套促銷活動方案(方案1運作費用為5元/件;方案2的運作費用為2元/件),在某地區部分營銷網點進行試點(每個試點網點只采用一種促銷活動方案),運作一年后,對比該地區上一年度的銷售情況,制作相應的等高條形圖如圖所示. ![]()
(1)請根據等高條形圖提供的信息,為該公司今年選擇一套較為有利的促銷活動方案(不必說明理由);
(2)已知該公司產品的成本為10元/件(未包括促銷活動運作費用),為制定本年度該地區的產品銷售價格,統計上一年度的8組售價xi(單位:元/件,整數)和銷量yi(單位:件)(i=1,2,…,8)如下表所示:
售價x | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 |
銷量y | 840 | 800 | 740 | 695 | 640 | 580 | 525 | 460 |
①請根據下列數據計算相應的相關指數R2 , 并根據計算結果,選擇合適的回歸模型進行擬合;
②根據所選回歸模型,分析售價x定為多少時?利潤z可以達到最大.
| | | |
| 49428.74 | 11512.43 | 175.26 |
| 124650 | ||
(附:相關指數
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設圓
的圓心為F1 , 直線l過點F2(2,0)且不與x軸、y軸垂直,且與圓F1于C,D兩點,過F2作F1C的平行線交直線F1D于點E,
(1)證明||EF1|﹣|EF2||為定值,并寫出點E的軌跡方程;
(2)設點E的軌跡為曲線Γ,直線l交Γ于M,N兩點,過F2且與l垂直的直線與圓F1交于P,Q兩點,求△PQM與△PQN的面積之和的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設{an}是首項為1,公差為2的等差數列,{bn}是首項為1,公比為q的等比數列.記cn=an+bn , n=1,2,3,….
(1)若{cn}是等差數列,求q的值;
(2)求數列{cn}的前n項和Sn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知F1(﹣1,0),F2(1,0)分別是橢圓C:
=1(a>0)的左、右焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若A,B分別在直線x=﹣2和x=2上,且AF1⊥BF1 .
(。┊敗鰽BF1為等腰三角形時,求△ABF1的面積;
(ⅱ)求點F1 , F2到直線AB距離之和的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin(cosx)﹣x與函數g(x)=cos(sinx)﹣x在區間
內都為減函數,設
,且cosx1=x1 , sin(cosx2)=x2 , cos(sinx3)=x3 , 則x1 , x2 , x3的大小關系是( )
A.x1<x2<x3
B.x3<x1<x2
C.x2<x1<x3
D.x2<x3<x1
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com