如圖,在四棱錐P-ABCD中,側(cè)面PAD
底面ABCD,側(cè)棱
,底面ABCD為直角梯形,其中BC//AD,AB
AD,AD=2,AB=BC=l,E為AD中點(diǎn).
(1)求證:PE
平面ABCD:
(2)求異面直線PB與CD所成角的余弦值:
(3)求平面PAB與平面PCD所成的二面角.![]()
(1)證明:在
中,
,
為
中點(diǎn),
.又側(cè)面
底面
,平面
平面
,
平面
.
平面
;(2)
;(3)
.
解析試題分析:(1)由題意可根據(jù)面面垂直的性質(zhì)定理來(lái)證,已知側(cè)面
底面
,并且相交于
,而
為等腰直角三角形,
為
中點(diǎn),所以
,即
垂直于兩個(gè)垂直平面的交線,且
平面
,所以
平面
;(2)連結(jié)
,由題意可知
是異面直線
與
所成的角,并且三角形
是直角三角形,
,
,
,由余弦定理得
;(3)利用體積相等法可得解,設(shè)點(diǎn)
到平面
的距離
,即由
,得
, 而在
中,
,所以
,因此
,又
,
,從而可得解.
(1)證明:在
中,
,
為
中點(diǎn),
. 2分
又側(cè)面
底面
,平面
平面
,
平面
.
平面
. 4分
(2)解:連結(jié)
,在直角梯形
中,
,
,有
且
.所以四邊形
平行四邊形,
.由(1)知
,
為銳角,所以
是異面直線
與
所成的角. 7分
,在
中,
.
.在
中,![]()
.在
中,
.
.
所以異面直線
與
所成的角的余弦值為
. 9分![]()
(3)解:由(2)得![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直三棱柱
中,
,
為
中點(diǎn),求直線
與平面
所成角的大小.(結(jié)果用反三角函數(shù)值表示)![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱柱
中,底面ABCD和側(cè)面
都是矩形,E是CD的中點(diǎn),
,
.
(1)求證:
;
(2)若平面
與平面
所成的銳二面角的大小為
,求線段
的長(zhǎng)度.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,AB=AD,∠BAD=90°,M,N,G分別是BD,BC,AB的中點(diǎn),將等邊△BCD沿BD折疊到△BC′D的位置,使得AD⊥C′B.
(1)求證:平面GNM∥平面ADC′.
(2)求證:C′A⊥平面ABD.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在如圖的幾何體中,四邊形
為正方形,四邊形
為等腰梯形,
∥
,
,
,
.
(1)求證:
平面
;
(2)求直線
與平面
所成角的正弦值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知正四棱柱
中,
是
的中點(diǎn).
(1)求證:
平面
;
(2)求證:
;
(3)在線段
上是否存在點(diǎn)
,當(dāng)
時(shí),平面
平面
?若存在,求出
的值并證明;若不存在,請(qǐng)說(shuō)明理由.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(2013•重慶)如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=
,F(xiàn)為PC的中點(diǎn),AF⊥PB.
(1)求PA的長(zhǎng);
(2)求二面角B﹣AF﹣D的正弦值.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com