【題目】已知直線
與
、
軸交于
、
兩點(diǎn).
(Ⅰ)若點(diǎn)
、
分別是雙曲線
的虛軸、實(shí)軸的一個(gè)端點(diǎn),試在平面上找兩點(diǎn)
、
,使得雙曲線
上任意一點(diǎn)到
、
這兩點(diǎn)距離差的絕對值是定值.
(Ⅱ)若以原點(diǎn)
為圓心的圓
截直線
所得弦長是
,求圓
的方程以及這條弦的中點(diǎn).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=sinxcosx將 f(x)的圖象向右平移
(0<φ<π) 個(gè)單位,得到y(tǒng)=g(x)圖象且g(x)的一條對稱軸是直線x=
.
(1)求φ;
(2)求函數(shù)y=g(x)的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知D是△ABC邊BC延長線上一點(diǎn),記
.若關(guān)于x的方程2sin2x﹣(λ+1)sinx+1=0在[0,2π)上恰有兩解,則實(shí)數(shù)λ的取值范圍是( )
A.λ<﹣2
B.λ<﹣4
C.![]()
D.λ<﹣4或 ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
=(cosx,﹣
),
=(sinx+cosx,1),f(x)=
,
(1)若0<α<
,sinα=
,求f(α)的值;
(2)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π),在同一周期內(nèi),當(dāng)x=
時(shí),f(x)取得最大值3;當(dāng)x=
時(shí),f(x)取得最小值﹣3.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}是等差數(shù)列,{bn}是各項(xiàng)都為正數(shù)的等比數(shù)列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求{an}、{bn}的通項(xiàng)公式;
(2)求數(shù)列
的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐
的底面
是平行四邊形,
平面
,
是
的中點(diǎn),
是
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)若
,求證:平面
平面
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn , 且滿足a1=1,an+1=2
+1,n∈N* .
(1)求a2的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)是否存在正整數(shù)k,使ak , S2k﹣1 , a4k成等比數(shù)列?若存在,求k的值,若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com