【題目】有一段演繹推理是這樣的: “直線平行于平面,則平行于平面內(nèi)所有直線;已知直線
平面
,直線
平面
,直線
∥平面
,則直線
∥直線
”的結(jié)論顯然是錯誤的,這是因為( )
A. 大前提錯誤 B. 小前提錯誤 C. 推理形式錯誤 D. 非以上錯誤
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
在點M(1,f(1))處的切線方程為
求(1)實數(shù)a,b的值;
(2)函數(shù)
的單調(diào)區(qū)間及在區(qū)間[0,3]上的最值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知
,
.
(1)若函數(shù)
的單調(diào)遞減區(qū)間為
,求函數(shù)
的圖象在點
處的切線方程;
(2)若不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)判斷函數(shù)
的奇偶性并求函數(shù)
的零點;
(Ⅱ)寫出
的單調(diào)區(qū)間;(只需寫出結(jié)果)
(Ⅲ)試討論方程
的根的情況.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線
=1(a>0,b>0)上一點C,過雙曲線中心的直線交雙曲線于A,B兩點,記直線AC,BC的斜率分別為k1 , k2 , 當
+ln|k1|+ln|k2|最小時,雙曲線離心率為( )
A.![]()
B.![]()
C.
+1
D.2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知y=f(x)是偶函數(shù),定義x≥0時,f(x)=![]()
(1)求f(-2);
(2)當x<-3時,求f(x)的解析式;
(3)設(shè)函數(shù)y=f(x)在區(qū)間[-5,5]上的最大值為g(a),試求g(a)的表達式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,⊙O1與⊙O2外切于點P,從⊙O1上點A作的切線AB,切點為B,連AP(不過O1)并延長與⊙O2交于點C. ![]()
(1)求證:AO1∥CO2;
(2)若
,求⊙O1的半徑與⊙O2的半徑之比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,半圓C的極坐標方程為ρ=2cosθ,θ∈[0,
]
(1)求C的參數(shù)方程;
(2)設(shè)點D在半圓C上,半圓C在D處的切線與直線l:y=
x+2垂直,根據(jù)(1)中你得到的參數(shù)方程,求直線CD的傾斜角及D的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
的圖象過點
.
(1)求
的值并求函數(shù)
的值域;
(2)若關(guān)于
的方程
有實根,求實數(shù)
的取值范圍;
(3)若
為偶函數(shù),求實數(shù)
的值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com