【題目】已知f(x)是定義在(﹣∞,+∞)上的偶函數,且在(﹣∞,0]上是增函數,設a=f(log47),b=f(log
3),c=f(21.6),則a,b,c的大小關系是( )
A.c<a<b
B.c<b<a
C.b<c<a
D.a<b<c
科目:高中數學 來源: 題型:
【題目】為了調查喜愛運動是否和性別有關,我們隨機抽取了50名對象進行了問卷調查得到了如下的2×2列聯表:
喜愛運動 | 不喜愛運動 | 合計 | |
男性 | 5 | ||
女性 | 10 | ||
合計 | 50 |
若在全部50人中隨機抽取2人,抽到喜愛運動和不喜愛運動的男性各一人的概率為
.
附:
P(K2≥k) | 0.05 | 0.01 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2= ![]()
(1)請將上面的2×2列聯表補充完整;
(2)能否在犯錯誤的概率不超過0.001的前提下認為喜愛運動與性別有關?說明你的理由..
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠生產某種零件,每個零件的成本為40元,出廠單價定為60元,該廠為鼓勵銷售商訂購,決定當一次訂購量超過100個時,每多訂購一個,訂購的全部零件的出廠單價就降低0.02元,但實際出廠單價不能低于51元.
(1)當一次訂購量為多少個時,零件的實際出廠單價恰降為51元?
(2)設一次訂購量為x個,零件的實際出廠單價為P元,寫出函數P=f(x)的表達式;
(3)當銷售商一次訂購500個零件時,該廠獲得的利潤是多少元?如果訂購1000個,利潤又是多少元?(工廠售出一個零件的利潤=實際出廠單價﹣成本)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數
.
(1)求函數
的單調區間;
(2)當
時,是否存在整數
,使不等式
恒成立?若存在,求整數
的值;若不存在,則說明理由;
(3)關于
的方程
在
上恰有兩個相異實根,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線
的參數方程為
(其中t為參數).現以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為
.
(Ⅰ) 寫出直線
的普通方程和曲線C 的直角坐標方程;
(Ⅱ) 過點
且與直線
平行的直線
交曲線C于
,
兩點,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,連結棱長為2cm的正方體各面的中心得一個多面體容器,從頂點A處向該容器內注水,注滿為止.已知頂點B到水面的高度h以每秒1cm勻速上升,記該容器內水的體積V(cm3)與時間T(S)的函數關系是V(t),則函數V(t)的導函數y=V′(t)的圖象大致是( ) ![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某鋼管生產車間生產一批鋼管,質檢員從中抽出若干根對其直徑(單位:
)進行測量,得出這批鋼管的直徑
服從正態分布
.
(Ⅰ)如果鋼管的直徑
滿足
為合格品,求該批鋼管為合格品的概率(精確到0.01);
(Ⅱ)根據(Ⅰ)的結論,現要從40根該種鋼管中任意挑選3根,求次品數
的分布列和數學期望.
(參考數據:若
,則
;
;
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com