【題目】已知拋物線的頂點在原點,它的準線過雙曲線
的右焦點,而且與x軸垂直.又拋物線與此雙曲線交于點
,求拋物線和雙曲線的方程.
【答案】解:由題意,設拋物線方程為y2=﹣2px(p>0)
∵拋物線圖象過點
,∴
,解之得p=2.
所以拋物線方程為y2=﹣4x,準線方程為x=1.
∵雙曲線的右焦點經過拋物線的準線,∴雙曲線右焦點坐標為(1,0),c=1
∵雙曲線經過點
,∴ ![]()
結合c2=a2+b2=1,聯解得
或a2=9,b2=﹣8(舍去)
∴雙曲線方程為
.
綜上所述,拋物線方程為y2=﹣4x,雙曲線方程為 ![]()
【解析】根據題中的點在拋物線上,列式解出拋物線方程為y2=﹣2x,從而算出雙曲線右焦點坐標為(1,0),可得c2=a2+b2=1.再由點
在雙曲線上建立關于a、b的方程,聯解得到a、b的值,即可得到雙曲線的方程.
科目:高中數學 來源: 題型:
【題目】已知△ABC的內角A,B,C的對邊分別為a,b,c,若cosA=
,c=3b,且△ABC面積S△ABC=
.
(1)求邊b.c;
(2)求邊a并判斷△ABC的形狀.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了檢測某輪胎公司生產的輪胎的寬度,需要抽檢一批輪胎(共10個輪胎),已知這批輪胎寬度(單位:
)的折線圖如下圖所示:
![]()
(1)求這批輪胎寬度的平均值;
(2)現將這批輪胎送去質檢部進行抽檢,抽檢方案是:從這批輪胎中任取5個作檢驗,這5個輪胎的寬度都在
內,則稱這批輪胎合格,如果抽檢不合格,就要重新再抽檢一次,若還是不合格,這批輪胎就認定不合格.
求這批輪胎第一次抽檢就合格的概率;
記
為這批輪胎的抽檢次數,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有8名奧運會志愿者,其中志愿者A1 , A2 , A3通曉日語,B1 , B2 , B3通曉俄語,C1 , C2通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.
(1)求A1被選中的概率;
(2)求B1和C1不全被選中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設向量
,
的夾角為60°且|
|=|
|=1,如果
,
,
.
(1)證明:A、B、D三點共線.
(2)試確定實數k的值,使k的取值滿足向量
與向量
垂直.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長為1的正方形,側棱PA的長為2,且PA與AB,AD的夾角都等于60°,M是PC的中點,設
=
,
=
,
=
. ![]()
(1)試用
,
,
表示出向量
;
(2)求BM的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若(a+b+c)(b+c﹣a)=3ab,且sinA=2sinBcosC,那么△ABC是( )
A.直角三角形
B.等邊三角形
C.等腰三角形
D.等腰直角三角形
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC 中,角A,B,C所對的邊分別為a,b,c,且asin Acos C+csin AcosA=
c
(1)若c=1,sin C=
,求△ABC的面積S
(2)若D 是AC的中點且cosB=
,BD=
,求△ABC的最短邊的邊長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga(2x+1),g(x)=loga(1﹣2x)(a>0且a≠1)
(1)求函數F(x)=f(x)﹣g(x)的定義域;
(2)判斷F(x)=f(x)﹣g(x)的奇偶性,并說明理由;
(3)確定x為何值時,有f(x)﹣g(x)>0.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com