已知拋物線
過點
.
(I)求拋物線的方程;
(II)已知圓心在
軸上的圓
過點
,且圓
在點
的切線恰是拋物線在點
的切線,求圓
的方程;
(Ⅲ)如圖,點
為
軸上一點,點
是點
關(guān)于原點的對稱點,過點
作一條直線與拋物線交于
兩點,若
,證明:
.![]()
(I)
;(II)
;(Ⅲ)見解析。
解析試題分析:(I)![]()
(II)由
得
所以拋物線
在點
處切線的斜率為![]()
過點
且與切線垂直的直線方程為:
,即
,令
得![]()
圓心
,半徑![]()
圓
的方程為:![]()
(Ⅲ)設(shè)直線AB的方程為
代入拋物線方程
得
設(shè)A、B兩點的坐標(biāo)分別是
、
、x2是方程①的兩根.
所以
①
由
得
即
②
由①、②可得![]()
又點Q是點P關(guān)于原點的對稱點,故點Q的坐標(biāo)是(0,-m),從而
.![]()
![]()
![]()
![]()
所以 ![]()
考點:拋物線的簡單性質(zhì);圓的簡單性質(zhì);導(dǎo)數(shù)的幾何意義;直線與拋物線的綜合應(yīng)用。
點評::研究直線與拋物線的綜合問題,通常的思路是:轉(zhuǎn)化為研究方程組的解的問題,利用直線方程與拋物線方程所組成的方程組消去一個變量后,將交點問題(包括公共點個數(shù)、與交點坐標(biāo)有關(guān)的問題)轉(zhuǎn)化為一元二次方程根的問題,結(jié)合根與系數(shù)的關(guān)系及判別式解決問題。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
(1)焦點在x軸上的橢圓的一個頂點為A(2,0),其長軸長是短軸長的2倍,求橢圓的標(biāo)準(zhǔn)方程.
(2)已知雙曲線的一條漸近線方程是
,并經(jīng)過點
,求此雙曲線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知過點
的動直線
與拋物線
相交于
兩點,當(dāng)直線
的斜率是
時,
。
(1)求拋物線
的方程;(5分)
(2)設(shè)線段
的中垂線在
軸上的截距為
,求
的取值范圍。(7分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
填空題(本大題有2小題,每題5分,共10分.請將答案填寫在答題卷中的橫線上):
(Ⅰ)函數(shù)
的最小值為 .
(Ⅱ)若點
在曲線
上,點
在曲線
上,點
在曲線
上,則
的最大值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓中心在原點,焦點在
軸上,橢圓短軸的端點和焦點組成的四邊形為正方形,且
.
(1)求橢圓方程;
(2)直線
過點
,且與橢圓相交于
、
不同的兩點,當(dāng)
面積取得最大值時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓
及直線
,當(dāng)直線和橢圓有公共點時.
(1)求實數(shù)
的取值范圍;
(2)求被橢圓截得的最長的弦所在的直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
:
(
)的離心率
,直線
與橢圓
交于不同的兩點
,以線段
為直徑作圓
,圓心為![]()
(Ⅰ)求橢圓
的方程;
(Ⅱ)當(dāng)圓
與
軸相切的時候,求
的值;
(Ⅲ)若
為坐標(biāo)原點,求
面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)點
為橢圓
內(nèi)的一定點,過P點引一直線,與橢圓相交于
兩點,且P恰好為弦AB的中點,如圖所示,求弦AB所在的直線方程及弦AB的長度。![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
. (本題滿分15分)已知點
,
為一個動點,且直線
的斜率之積為![]()
(I)求動點
的軌跡
的方程;
(II)設(shè)
,過點
的直線
交
于
兩點,
的面積記為S,若對滿足條件的任意直線
,不等式
的最小值。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com