【題目】意大利著名數學家斐波那契在研究兔子的繁殖問題時,發現有這樣的一列數:1,1,2,3,5,8,…,該數列的特點是:前兩個數均為1,從第三個數起,每一個數都等于它前面兩個數的和.人們把這樣的一列數組成的數列
稱為斐波那契數列. 并將數列
中的各項除以4所得余數按原順序構成的數列記為
,則下列結論正確的是( )
A.
B.![]()
C.
D.![]()
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且![]()
![]()
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,
,且四棱錐P-ABCD的體積為
,求該四棱錐的側面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城鎮社區為了豐富轄區內廣大居民的業余文化生活,創建了社區“文化丹青”大型活動場所,配備了各種文化娛樂活動所需要的設施,讓廣大居民健康生活、積極向上.社區最近四年內在“文化丹青”上的投資金額統計數據如表:(為了便于計算,把2015年簡記為5,其余以此類推)
年份 | 5 | 6 | 7 | 8 |
投資金額 | 15 | 17 | 21 | 27 |
(1)利用所給數據,求出投資金額
與年份
之間的回歸直線方程
;
(2)預測該社區在2019年在“文化丹青”上的投資金額.
(附:對于一組數據
,
,…,
,其回歸直線
的斜率和截距的最小二乘估計分別為
,
.)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( )
A.互相垂直的兩條直線的直觀圖仍然是互相垂直的兩條直線
B.梯形的直觀圖可能是平行四邊形
C.矩形的直觀圖可能是梯形
D.正方形的直觀圖可能是平行四邊形
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(題文)某研究小組在電腦上進行人工降雨模擬實驗,準備用A、B、C三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,其實驗數據統計如下:
方式 | 實施地點 | 大雨 | 中雨 | 小雨 | 模擬實驗總次數 |
A | 甲 | 4次 | 6次 | 2次 | 12次 |
B | 乙 | 3次 | 6次 | 3次 | 12次 |
C | 丙 | 2次 | 2次 | 8次 | 12次 |
假定對甲、乙、丙三地實施的人工降雨彼此互不影響,請你根據人工降雨模擬實驗的統計數據:
(1)求甲、乙、丙三地都恰為中雨的概率;
(2)考慮到旱情和水土流失,如果甲地恰需中雨即達到理想狀態,乙地必須是大雨才達到理想狀態,丙地只要是小雨或中雨即達到理想狀態,記“甲、乙、丙三地中達到理想狀態的個數”為隨機變量ξ,求隨機變量ξ的分布列和均值E(ξ).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了展示中華漢字的無窮魅力,傳遞傳統文化,提高學習熱情,某校開展《中國漢字聽寫大會》的活動.為響應學校號召,2(9)班組建了興趣班,根據甲、乙兩人近期8次成績畫出莖葉圖,如圖所示(把頻率當作概率).
![]()
(1)求甲、乙兩人成績的平均數和中位數;
(2)現要從甲、乙兩人中選派一人參加比賽,從統計學的角度,你認為派哪位學生參加比較合適?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,圓
:
.
![]()
(Ⅰ)若圓C與x軸相切,求圓C的方程;
(Ⅱ)已知
,圓
與x軸相交于兩點
(點
在點
的左側).過點
任作一條直線與圓
:
相交于兩點A,B.問:是否存在實數a,使得
=
?若存在,求出實數a的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某印刷廠為了研究單冊書籍的成本
(單位:元)與印刷冊數
(單位:千冊)之間的關系,在印制某種書籍時進行了統計,相關數據見下表:
![]()
根據以上數據,技術人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲:
,方程乙:
.
(1)為了評價兩種模型的擬合效果,完成以下任務.
①完成下表(計算結果精確到0.1);
![]()
②分別計算模型甲與模型乙的殘差平方和
及
,并通過比較
的大小,判斷哪個模型擬合效果更好.
(2)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進行二次印刷,根據市場調查,新需求量為10千冊,若印刷廠以每冊5元的價格將書籍出售給訂貨商,求印刷廠二次印刷10千冊獲得的利潤?(按(1)中擬合效果較好的模型計算印刷單冊書的成本).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com