【題目】已知橢圓
的一個焦點坐標(biāo)為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知點
,過點
的直線
(與
軸不重合)與橢圓
交于
兩點,直線
與直線
相交于點
,試證明:直線
與
軸平行.
【答案】(Ⅰ)
(Ⅱ)見解析
【解析】試題分析:(Ⅰ)由題意可知
所以
,即可得到求橢圓
的方程;
(Ⅱ)①當(dāng)直線
的斜率不存在時,易證直線
與
軸平行
②當(dāng)直線
的斜率存在時,設(shè)直線
的方程為
.
因為點
,所以直線
的方程為
.
令
,所以
.
由
消去
得
.顯然
恒成立.
所以![]()
這時可證
,即
.
所以直線
軸.
試題解析:
(Ⅰ)由題意可知
所以
.所以橢圓
的方程為
.
(Ⅱ)①當(dāng)直線
的斜率不存在時,此時
軸.設(shè)
,直線
與
軸相交于點
,易得點
是點
和點
的中點,又因為
,
所以
,所以直線
軸.
②當(dāng)直線
的斜率存在時,設(shè)直線
的方程為
.
因為點
,所以直線
的方程為
.
令
,所以
.
由
消去
得
.顯然
恒成立.
所以![]()
因為![]()
![]()
,
所以
.
所以直線
軸.
綜上所述,所以直線
軸.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,
(
).
(1)當(dāng)
時,若函數(shù)
與
的圖象在
處有相同的切線,求
的值;
(2)當(dāng)
時,若對任意
和任意
,總存在不相等的正實數(shù)
,使得
,求
的最小值;
(3)當(dāng)
時,設(shè)函數(shù)
與
的圖象交于
兩點.求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線
的參數(shù)方程為
,其中
為參數(shù),且
在直角坐標(biāo)系
中,以坐標(biāo)原點
為極點,以
軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線
的極坐標(biāo)方程;
(2)設(shè)
是曲線
上的一點,直線
被曲線
截得的弦長為
,求
點的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解用戶對其產(chǎn)品的滿意度,從A、B兩地區(qū)分別隨機調(diào)查了20個用戶,得到用戶對產(chǎn)品的滿意度評分如下:
A地區(qū): | 62 | 73 | 81 | 92 | 95 | 85 | 74 | 64 | 53 | 76 |
78 | 86 | 95 | 66 | 97 | 78 | 88 | 82 | 76 | 89 | |
B地區(qū): | 73 | 83 | 62 | 51 | 91 | 46 | 53 | 73 | 64 | 82 |
93 | 48 | 95 | 81 | 74 | 56 | 54 | 76 | 65 | 79 |
(Ⅰ)根據(jù)兩組數(shù)據(jù)完成兩地區(qū)用戶滿意度評分的莖葉圖,并通過莖葉圖比較兩地區(qū)滿意度的平均值及分散程度(不要求算出具體值,給出結(jié)論即可):
![]()
(Ⅱ)根據(jù)用戶滿意度評分,將用戶的滿意度從低到高分為三個等級:
滿意度評分 | 低于70分 | 70分到89分 | 不低于90分 |
滿意度等級 | 不滿意 | 滿意 | 非常滿意 |
記事件C:“A地區(qū)用戶的滿意度等級高于B地區(qū)用戶的滿意度等級”,假設(shè)兩地區(qū)用戶的評價結(jié)果相互獨立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求C的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高三年級共有1000名學(xué)生,其中男生650人,女生350人,為了調(diào)查學(xué)生周末的休閑方式,用分層抽樣的方法抽查了200名學(xué)生.
(Ⅰ)完成下面的
列聯(lián)表;
不喜歡運動 | 喜歡運動 | 合計 | |
女生 | 50 | ||
男生 | |||
合計 | 100 | 200 |
![]()
(Ⅱ)在抽取的樣本中,調(diào)查喜歡運動女生的運動時間,發(fā)現(xiàn)她們的運動時間介于30分鐘到90分鐘之間,右圖是測量結(jié)果的頻率分布直方圖,若從區(qū)間段
和
的所有女生中隨機抽取兩名女生,求她們的運動時間在同一區(qū)間段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,底面
為梯形,平面
平面
![]()
為側(cè)棱
的中點,且
.
![]()
(1)證明:
平面
;
(2)若點
到平面
的距離為
,且
,求點到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
為坐標(biāo)原點,拋物線
上在第一象限內(nèi)的點
到焦點的距離為
,曲線
在點
處的切線交
軸于點
,直線
經(jīng)過點
且垂直于
軸.
(Ⅰ)求
點的坐標(biāo);
(Ⅱ)設(shè)不經(jīng)過點
和
的動直線
交曲線
于點
和
,交
于點
,若直線
,
,
的斜率依次成等差數(shù)列,試問:
是否過定點?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點
在橢圓
上,且橢圓的離心率為
.
(1)求橢圓
的方程;
(2)若
為橢圓
的右頂點,點
是橢圓
上不同的兩點(均異于
)且滿足直線
與
斜率之積為
.試判斷直線
是否過定點,若是,求出定點坐標(biāo),若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2018屆高三·湖南十校聯(lián)考)已知函數(shù)f(x)=x+sin x(x∈R),且f(y2-2y+3)+f(x2-4x+1)≤0,則當(dāng)y≥1時,
的取值范圍是( )
A.
B. ![]()
C. [1,3
-3] D. ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com