(本小題滿分14分)
已知函數(shù)
,![]()
(Ⅰ)若
,求
的單調(diào)區(qū)間;
(Ⅱ)在(Ⅰ)的條件下,對
,都有
,求實數(shù)
的取值范圍;
(Ⅲ)若
在
,
上單調(diào)遞增,在
上單調(diào)遞減,求實數(shù)
的取值范圍。
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
已知
是函數(shù)
的一個極值點,且函數(shù)
的圖象在
處的切線的斜率為2
.
(Ⅰ)求函數(shù)
的解析式并求單調(diào)區(qū)間.(5分)
(Ⅱ)設(shè)
,其中
,問:對于任意的
,方程![]()
在區(qū)間
上是否存在實數(shù)根?若存在,請確定實數(shù)根的個數(shù).若不存在,請說明理由.(9分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知函數(shù)
,
(1)求
為何值時,
在
上取得最大值;
(2)設(shè)
,若
是單調(diào)遞增函數(shù),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
=
(
是自然對數(shù)的底)
(1)若函數(shù)
是(1,+∞)上的增函數(shù),求
的取值范圍;
(2)若對任意的
>0,都有
,求滿足條件的最大整數(shù)
的值;
(3)證明:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知函數(shù)
在(0,1)上是增函數(shù).(1)求
的取值范圍;
(2)設(shè)
(
),試求函數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù)
.
(1)若
在
上是增函數(shù),求實數(shù)
的取值范圍;
(2)若
是
的極值點,求
在
上的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)設(shè)函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若
對
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知實數(shù)a滿足0<a≤2,a≠1,設(shè)函數(shù)f (x)=
x3-
x2+ax.
(Ⅰ)當(dāng)a=2時,求f (x)的極小值;
(Ⅱ)若函數(shù)g(x)=x3+bx2-(2b+4)x+ln x (b∈R)的極小值點與f (x)的極小值點相同.求證:g(x)的極大值小于等于
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
,其中![]()
(I)當(dāng)
時,判斷函數(shù)
在定義域上的單調(diào)性;
(II)求函數(shù)
的極值點;
(III)證明對任意的正整數(shù)n ,不等式
都成立.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com