【題目】已知橢圓
:在
軸上的一個焦點,與短軸兩個端點的連線互相垂直,且右焦點坐標為
.
(1)求橢圓
的方程;
(2)設直線
與圓
相切,和橢圓交于
,
兩點,
為原點,線段
,
分別和圓
交于
,
兩點,設
,
的面積分別為
,
,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】為測試特斯拉汽車的百米加速時間,研發人員記錄了汽車在
取
、
、
、
、
、
、
時刻的位移,并對數據做了初步處理,得到圖
.同時,令
,得到數據圖
,現畫出
與
,
與
的散點圖.
|
|
|
|
|
|
|
| |||
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
| |
累加 |
|
|
|
| 累加 |
|
|
|
|
![]()
(1)根據散點圖判斷,
與
,
與
哪兩個量之間線性相關程度更強?(直接給出判斷即可);
(2)根據(1)的結果選擇線性相關程度更強的兩個量,建立相應的回歸直線方程;
(3)根據(2)的結果預計特斯拉汽車百米加速需要的時間.
附:對于一組數據
、
、
、
,其回歸直線
的斜率和截距的最小二乘估計分別為:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有12支球隊進行足球比賽,每兩隊都賽一場,勝者得3分,負者得0分,平局各得1分那么,有1支球隊最少要得多少分才能保證最多有6支球隊的得分不少于該隊的得分?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
為坐標原點,橢圓
的焦距為
,直線
截圓
與橢圓
所得的弦長之比為
,圓
、橢圓
與
軸正半軸的交點分別為
,
.
(1)求橢圓
的標準方程;
(2)設點
(
且
)為橢圓
上一點,點
關于
軸的對稱點為
,直線
,
分別交
軸于點
,
,證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在2018年俄羅斯世界杯期間,莫斯科的部分餐廳經營了來自中國的小龍蝦,這些小龍蝦標有等級代碼.為得到小龍蝦等級代碼數值
與銷售單價
之間的關系,經統計得到如下數據:
等級代碼數值 | 38 | 48 | 58 | 68 | 78 | 88 |
銷售單價 | 16.8 | 18.8 | 20.8 | 22.8 | 24 | 25.8 |
(1)已知銷售單價
與等級代碼數值
之間存在線性相關關系,求
關于
的線性回歸方程(系數精確到0.1);
(2)若莫斯科某餐廳銷售的中國小龍蝦的等級代碼數值為98,請估計該等級的中國小龍蝦銷售單價為多少元?
參考公式:對一組數據
,
,····
,其回歸直線
的斜率和截距最小二乘估計分別為:
,
.
參考數據:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市每年春節前后,由于大量的煙花炮竹的燃放,空氣污染較為嚴重.該市環保研究所對近年春節前后每天的空氣污染情況調查研究后發現,每天空氣污染的指數.f(t),隨時刻t(時)變化的規律滿足表達式
,其中a為空氣治理調節參數,且a∈(0,1).
(1)令
,求x的取值范圍;
(2)若規定每天中f(t)的最大值作為當天的空氣污染指數,要使該市每天的空氣污染指數不超過5,試求調節參數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】祖暅原理也就是“等積原理”,它是由我國南北朝杰出的數學家祖沖之的兒子祖暅首先提出來的.祖暅原理的內容是:“冪勢既同,則積不容異”,“勢”即是高,“冪”是面積.意思是,如果夾在兩平行平面間的兩個幾何體,被平行于這兩個平行平面的平面所截,如果兩個截面的面積總相等,那么這兩個幾何體的體積相等.已知,兩個平行平面間有三個幾何體,分別是三棱錐、四棱錐、圓錐(高度都是h),其中:三棱錐的體積為V,四棱錐的底面是邊長為a的正方形,圓錐的底面半徑為r,現用平行于這兩個平面的平面去截三個幾何體,如果得到的三個截面面積總相等,那么,下面關系式正確的是( )
A.
,
,
B.
,
,![]()
C.
,
,
D.
,
,![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線
的焦點為F,過F作兩條互相垂直的弦AB、CD,設AB、CD的中點分別為M、N。
(1)求證:直線MN必過定點;
(2)分別以AB和CD為直徑作圓,求兩圓相交弦中點H的軌跡方程。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com