【題目】已知雙曲線
的右頂點為A,拋物線的焦點與點A重合.
(1)求拋物線的標準方程;
(2)若直線l過點A且斜率為雙曲線的離心率,求直線l被拋物線截得的弦長.
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,滿足(2b﹣c)cosA=acosC.
(1)求角A;
(2)若
,b+c=5,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
是空氣質量的一個重要指標,我國
標準采用世衛組織設定的最寬限值,即
日均值在
以下空氣質量為一級,在
之間空氣質量為二級,在
以上空氣質量為超標.如圖是某地
月
日到
日
日均值(單位:
)的統計數據,則下列敘述不正確的是( )
![]()
A.從
日到
日,
日均值逐漸降低
B.這
天的
日均值的中位數是![]()
C.這
天中
日均值的平均數是![]()
D.從這
天的日均
監測數據中隨機抽出一天的數據,空氣質量為一級的概率是![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖甲所示,
是梯形
的高,
,
,
,現將梯形
沿
折起如圖乙所示的四棱錐
,使得
,點
是線段
上一動點.
![]()
![]()
(1)證明:
和
不可能垂直;
(2)當
時,求
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年11月15日,我市召開全市創建全國文明城市動員大會,會議向全市人民發出動員令,吹響了集結號.為了了解哪些人更關注此活動,某機構隨機抽取了年齡在15~75歲之間的100人進行調查,并按年齡繪制的頻率分布直方圖如圖所示,其分組區間為:
,
,
,
,
,
.把年齡落在
和
內的人分別稱為“青少年人”和“中老年人”,經統計“青少年人”與“中老年人”的人數之比為
.
![]()
(1)求圖中
的值,若以每個小區間的中點值代替該區間的平均值,估計這100人年齡的平均值
;
(2)若“青少年人”中有15人關注此活動,根據已知條件完成題中的
列聯表,根據此統計結果,問能否有
的把握認為“中老年人”比“青少年人”更加關注此活動?
關注 | 不關注 | 合計 | |
青少年人 | 15 | ||
中老年人 | |||
合計 | 50 | 50 | 100 |
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
附參考公式:
,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,設橢圓
:
,長軸的右端點與拋物線
:
的焦點
重合,且橢圓
的離心率是
.
![]()
(Ⅰ)求橢圓
的標準方程;
(Ⅱ)過
作直線
交拋物線
于
,
兩點,過
且與直線
垂直的直線交橢圓
于另一點
,求
面積的最小值,以及取到最小值時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知過點
的橢圓
的離心率為
,左頂點和上頂點分別為A,B.
![]()
(1)求橢圓的標準方程;
(2)若P為線段OD延長線上一點,直線PA交橢圓于另一點E,直線PB交橢圓于另一點Q.
①求直線PA與PB的斜率之積;
②判斷直線AB與EQ是否平行?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我們知道,地球上的水資源有限,愛護地球、節約用水是我們每個人的義務和責任.某市政府為了對自來水的使用進行科學管理,節約水資源,計劃確定一個家庭年用水量的標準,為此,對全市家庭日常用水的情況進行抽樣調查,并獲得了
個家庭某年的用水量(單位:立方米),統計結果如下表所示.
![]()
(Ⅰ)分別求出
的值;
(Ⅱ)若以各組區間中點值代表該組的取值,試估計全市家庭平均用水量;
(Ⅲ)從樣本中年用水量在
(單位:立方米)的
個家庭中任選
個,作進一步跟蹤研究,求年用水量最多的家庭被選中的概率(
個家庭的年用水量都不相等).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系
中,以坐標原點為極點,
軸正半軸為極坐標建立極坐標系,圓
的極坐標方程為
.
求
的普通方程;
將圓
平移,使其圓心為
,設
是圓
上的動點,點
與
關于原點
對稱,線段
的垂直平分線與
相交于點
,求
的軌跡的參數方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com