已知函數(shù)
,
,
圖象與
軸異于原點(diǎn)的交點(diǎn)M處的切線為
,
與
軸的交點(diǎn)N處的切線為
, 并且
與
平行.
(1)求
的值;
(2)已知實(shí)數(shù)t∈R,求
的取值范圍及函數(shù)
的最小值;
(3)令
,給定
,對于兩個大于1的正數(shù)
,存在實(shí)數(shù)
滿足:
,
,并且使得不等式
恒成立,求實(shí)數(shù)
的取值范圍.
(1)2 (2)
(3)![]()
解析試題分析:
(1)根據(jù)題意求出f(x),g(x-1)與x軸交點(diǎn)的坐標(biāo),利用切線平行,即導(dǎo)函數(shù)在交點(diǎn)處的導(dǎo)函數(shù)值相等,即可求出f(x)中參數(shù)a的值,進(jìn)而得到f(2).
(2)可以利用求定義域,求導(dǎo),求單調(diào)性與極值 對比極值與端點(diǎn)值得到
的取值范圍
.進(jìn)而直接用u替代
中的
,把問題轉(zhuǎn)化為求解
在區(qū)間
上的最小值,即為一個含參二次函數(shù)的最值.則利用二次函數(shù)的單調(diào)性,即分對稱軸在區(qū)間
的左邊,中,右邊三種情況進(jìn)行討論得到函數(shù)
的最小值.
(3)對F(x)求導(dǎo)求并確定導(dǎo)函數(shù)的符號得到函數(shù)F(x)的單調(diào)性,有了F(x)的單調(diào)性,則要得到不等式,我們只需要討論m的范圍確定
的大小關(guān)系,再根據(jù)單調(diào)性得到
的大小關(guān)系,判斷其是否符合不等式
,進(jìn)而得到m的取值范圍.
試題解析:
(1)
圖象與
軸異于原點(diǎn)的交點(diǎn)
,
1分
圖象與
軸的交點(diǎn)
,
2分
由題意可得
, 即
, 3分
∴
,
4分
(2)
=
5分
令
,在
時,
,
∴
在
單調(diào)遞增,
6分
圖象的對稱軸
,拋物線開口向上
①當(dāng)
即
時,
7分
②當(dāng)
即
時,
8分
③當(dāng)
即
時,
9分
,![]()
![]()
所以
在區(qū)間
上單調(diào)遞增
∴
時,
10分
①當(dāng)
時,有
,
,
得
,同理
,
∴ 由
的單調(diào)性知 ![]()
![]()
、![]()
![]()
![]()
從而有
,符合題設(shè). 11分
②當(dāng)
時,
,
,
由![]()
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)求
在
上的最大值;
(2)若直線
為曲線
的切線,求實(shí)數(shù)
的值;
(3)當(dāng)
時,設(shè)
,且
,若不等式
恒成立,求實(shí)數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=
x3+
ax2+bx.
(1)若a=2b,試問函數(shù)f(x)能否在x=-1處取到極值?若有可能,求出實(shí)數(shù)a,b的值;否則說明理由.
(2)若函數(shù)f(x)在區(qū)間(-1,2),(2,3)內(nèi)各有一個極值點(diǎn),試求w=a-4b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)當(dāng)
時,求函數(shù)
的單調(diào)遞增區(qū)間;
(2)記函數(shù)
的圖象為曲線
,設(shè)點(diǎn)
是曲線
上的不同兩點(diǎn).如果在曲線
上存在點(diǎn)
,使得:①
;②曲線
在點(diǎn)
處的切線平行于直線
,則稱函數(shù)
存在“中值相依切線”,試問:函數(shù)
是否存在“中值相依切線”,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=lnx-ax,g(x)=ex-ax,其中a為實(shí)數(shù).
(1)若f(x)在(1,+∞)上是單調(diào)減函數(shù),且g(x)在(1,+∞)上有最小值,求a的取值范圍;
(2)若g(x)在(-1,+∞)上是單調(diào)增函數(shù),試求f(x)的零點(diǎn)個數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ln(x+1)-x2-x.
(1)若關(guān)于x的方程f(x)=-
x+b在區(qū)間[0,2]上恰有兩個不同的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;
(2)證明:對任意的正整數(shù)n,不等式2+
+
+…+
>ln(n+1)都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=-x3+x2,g(x)=aln x,a∈R.
(1)若對任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范圍;
(2)設(shè)F(x)=
若P是曲線y=F(x)上異于原點(diǎn)O的任意一點(diǎn),在曲線y=F(x)上總存在另一點(diǎn)Q,使得△POQ中的∠POQ為鈍角,且PQ的中點(diǎn)在y軸上,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=aln x-ax-3(a∈R).
(1)若a=-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對于任意的t∈[1,2],函數(shù)g(x)=x3+x2
(f′(x)是f(x)的導(dǎo)函數(shù))在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(3)求證:
×…×
<
(n≥2,n∈N*)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com