【題目】如圖,在四棱錐
中,底面
是正方形,側棱
底面
,
是
的中點,求證:
![]()
(1)
平面
;
(2)
.
科目:高中數學 來源: 題型:
【題目】已知斜三棱柱
的底面是直角三角形,
,側棱與底面成銳角
,點
在底面上的射影
落在
邊上.
![]()
(Ⅰ) 求證:
平面
;
(Ⅱ) 當
為何值時,
,且
為
的中點?
(Ⅲ) 當
,且
為
的中點時,若
,四棱錐
的體積為
,求二面角
的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數
圖像上的點P(
,t )向左平移s(s﹥0) 個單位長度得到點P′.若 P′位于函數y=sin2x的圖像上,則( )
A.t=
,s的最小值為 ![]()
B.t=
,s的最小值為 ![]()
C.t=
,s的最小值為 ![]()
D.t=
,s的最小值為 ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:
(a>b>0)的離心率為
,A(a,0),B(0,b),O(0,0),△OAB的面積為1.
(1)求橢圓C的方程;
(2)設P的橢圓C上一點,直線PA與Y軸交于點M,直線PB與x軸交于點N。求證:lANl
lBMl為定值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax+bx(a>0,b>0,a≠1,b≠1).
(1)設a=2,b=
.
①求方程f(x)=2的根;
②若對于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求實數m的最大值;
(2)若0<a<1,b>1,函數g(x)=f(x)﹣2有且只有1個零點,求ab的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點E為棱PC的中點.
![]()
(1)證明:BE⊥DC;
(2)求直線BE與平面PBD所成角的正弦值;
(3)若F為棱PC上一點,滿足BF⊥AC,求二面角F-AB-P的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.
(1)求f(x)的單調區(qū)間;
(2)若f(x)存在極值點x0 , 且f(x1)=f(x0),其中x1≠x0 , 求證:x1+2x0=0;
(3)設a>0,函數g(x)=|f(x)|,求證:g(x)在區(qū)間[﹣1,1]上的最大值不小于
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠為了對新研發(fā)的一種產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到如下數據:
單價x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回歸直線方程
=bx+a;(其中
,
,
,
,
);
(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產品的成本是4元/件,為使工廠獲得最大利潤,該產品的單價應定為多少元?(利潤=銷售收入-成本)
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com