某地區(qū)注重生態(tài)環(huán)境建設(shè),每年用于改造生態(tài)環(huán)境總費用為
億元,其中用于風(fēng)景區(qū)改造為
億元。該市決定制定生態(tài)環(huán)境改造投資方案,該方案要求同時具備下列三個條件:①每年用于風(fēng)景區(qū)改造費用隨每年改造生態(tài)環(huán)境總費用增加而增加;②每年改造生態(tài)環(huán)境總費用至少
億元,至多
億元;③每年用于風(fēng)景區(qū)改造費用不得低于每年改造生態(tài)環(huán)境總費用的15%,但不得高于每年改造生態(tài)環(huán)境總費用的25%.
若
,
,請你分析能否采用函數(shù)模型y=
作為生態(tài)環(huán)境改造投資方案.
能采用函數(shù)模型
作為生態(tài)環(huán)境改造投資方案.
解析試題分析:本題主要考查利用導(dǎo)數(shù)研究簡單實際問題,考查導(dǎo)數(shù)的運算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值問題,考查函數(shù)思想,考查綜合分析和解決問題的能力和計算能力.對函數(shù)求導(dǎo),判斷導(dǎo)數(shù)恒大于0,所以得出函數(shù)是增函數(shù)滿足條件①,構(gòu)造新函數(shù)
,通過求導(dǎo)判斷函數(shù)的單調(diào)性,由②可知
,所以判斷
上函數(shù)的單調(diào)性和最值,最值符合③的要求,所以綜上可得可以采用此函數(shù)模型.
試題解析:∵
,
∴函數(shù)
是增函數(shù),滿足條件①,
設(shè)
,
則
,
令
,得
.
當(dāng)
時,
,
在
上是減函數(shù),
當(dāng)
時,
,
在
上是增函數(shù),
又
,即
,
在
上是減函數(shù),在
上是增函數(shù),
∴當(dāng)
時,
有最小值為
,
當(dāng)
時,
,
當(dāng)
時,
,
∴能采用函數(shù)模型
作為生態(tài)環(huán)境改造投資方案.
考點:1.利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性;2. 利用導(dǎo)數(shù)求函數(shù)的最值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
是
上的奇函數(shù),且![]()
(1)求
的值
(2)若
,
,求
的值
(3)若關(guān)于
的不等式
在
上恒成立,求
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)某商店商品每件成本10元,若售價為25元,則每天能賣出288件,經(jīng)調(diào)查,如果降低價格,銷售量可以增加,且每天多賣出的商品件數(shù)t與商品單價的降低值
(單位:元,
)的關(guān)系是t=
.
(1)將每天的商品銷售利潤y表示成
的函數(shù);
(2)如何定價才能使每天的商品銷售利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
.
(Ⅰ)當(dāng)
時,判斷
的奇偶性,并說明理由;
(Ⅱ)當(dāng)
時,若
,求
的值;
(Ⅲ)若
,且對任何
不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在圓
上任取一點
,設(shè)點
在
軸上的正投影為點
.當(dāng)點
在圓上運動時,動點
滿足
,動點
形成的軌跡為曲線
.
(1)求曲線
的方程;
(2)已知點
,若
、
是曲線
上的兩個動點,且滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義域為
的奇函數(shù)
滿足
,且當(dāng)
時,
.
(Ⅰ)求
在
上的解析式;
(Ⅱ)若存在
,滿足
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得10萬元到1000萬元的投資收益.現(xiàn)準(zhǔn)備制定一個對科研課題組的獎勵方案:獎金
(單位:萬元)隨投資收益
(單位:萬元)的增加而增加,且獎金不超過9萬元,同時獎金不超過投資收益的20%.
(1)若建立函數(shù)
模型制定獎勵方案,試用數(shù)學(xué)語言表述該公司對獎勵函數(shù)
模型的基本要求,并分析函數(shù)
是否符合這個要求,并說明原因;
(2)若該公司采用函數(shù)
作為獎勵函數(shù)模型,試確定最小的正整數(shù)
的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com