【題目】點(diǎn)A、B分別是橢圓
長軸的左、右端點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓上,且位于
軸上方,
.
(1)求點(diǎn)P的坐標(biāo);
(2)設(shè)M是橢圓長軸AB上的一點(diǎn),M到直線AP的距離等于
,求橢圓上的點(diǎn)到點(diǎn)M的距離
的最小值.
【答案】(1)(
,
).(2)![]()
【解析】
(1)根據(jù)條件列關(guān)于P點(diǎn)坐標(biāo)得方程組,解得結(jié)果,(2)先根據(jù)點(diǎn)到直線距離公式結(jié)合條件解得點(diǎn)M坐標(biāo),再建立
的函數(shù)解析式,最后根據(jù)二次函數(shù)性質(zhì)求最小值.
解:(1)由已知可得點(diǎn)A(-6,0),F(4,0)
設(shè)點(diǎn)P(
,
),則
={
+6,
},
={
-4,
},
由已知可得![]()
則2
+9
-18=0,解得
=
或
=-6.
由于
>0,只能
=
,于是
=
.
∴點(diǎn)P的坐標(biāo)是(
,
).
(2)直線AP的方程是
-![]()
+6=0.
設(shè)點(diǎn)M(
,0),則M到直線AP的距離是
.
于是
=
,又-6≤
≤6,解得
=2.
橢圓上的點(diǎn)(
,
)到點(diǎn)M的距離為
,
則
,
由于-6≤
≤6, ∴當(dāng)
=
時,
取得最小值
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為考察某動物疫苗預(yù)防某種疾病的效果,現(xiàn)對200只動物進(jìn)行調(diào)研,并得到如下數(shù)據(jù):
未發(fā)病 | 發(fā)病 | 合計 | |
未注射疫苗 | 20 | 60 | 80 |
注射疫苗 | 80 | 40 | 120 |
合計 | 100 | 100 | 200 |
(附:
)
| 0.05 | 0.01 | 0.005 | 0.001 |
| 3.841 | 6.635 | 7.879 | 10.828 |
則下列說法正確的:( )
A.至少有99.9%的把握認(rèn)為“發(fā)病與沒接種疫苗有關(guān)”
B.至多有99%的把握認(rèn)為“發(fā)病與沒接種疫苗有關(guān)”
C.至多有99.9%的把握認(rèn)為“發(fā)病與沒接種疫苗有關(guān)”
D.“發(fā)病與沒接種疫苗有關(guān)”的錯誤率至少有0.01%
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有
個零件,已知其中有
個正品、
個次品.現(xiàn)隨機(jī)地逐一檢查,則恰好在檢查第
個零件查出了所有次品的概率為( ).
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新高考方案的實(shí)施,學(xué)生對物理學(xué)科的選擇成了焦點(diǎn)話題. 某學(xué)校為了了解該校學(xué)生的物理成績,從
,兩個班分別隨機(jī)調(diào)查了40名學(xué)生,根據(jù)學(xué)生的某次物理成績,得到
班學(xué)生物理成績的頻率分布直方圖和
班學(xué)生物理成績的頻數(shù)分布條形圖.
![]()
(Ⅰ)估計
班學(xué)生物理成績的眾數(shù)、中位數(shù)(精確到
)、平均數(shù)(各組區(qū)間內(nèi)的數(shù)據(jù)以該組區(qū)間的中點(diǎn)值為代表);
(Ⅱ)填寫列聯(lián)表,并判斷是否有
的把握認(rèn)為物理成績與班級有關(guān)?
物理成績 | 物理成績 | 合計 | |
| |||
| |||
合計 |
附:
列聯(lián)表隨機(jī)變量
;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
(
)的左右焦點(diǎn)分別為
,左右頂點(diǎn)分別為
,過右焦點(diǎn)
且垂直于長軸的直線交橢圓于
兩點(diǎn),
,
的周長為
.過
點(diǎn)作直線
交橢圓于第一象限的
點(diǎn),直線
交橢圓于另一點(diǎn)
,直線
與直線
交于點(diǎn)
;
![]()
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若
的面積為
,求直線
的方程;
(3)證明:點(diǎn)
在定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn)的雙曲線
的右焦點(diǎn)為
,右頂點(diǎn)為
.
(1)求雙曲線
的方程;
(2)若直線
與雙曲線
恒有兩個不同的交點(diǎn)
和
,且
(其中
為坐標(biāo)原點(diǎn)),求實(shí)數(shù)
取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一個12位的正整數(shù)可以被37整除,且只包含數(shù)碼
,求這個12為數(shù)的各位數(shù)字之和的所有可能值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
中心在原點(diǎn)
,焦點(diǎn)在坐標(biāo)軸上,直線
與橢圓
在第一象限內(nèi)的交點(diǎn)是
,點(diǎn)
在
軸上的射影恰好是橢圓
的右焦點(diǎn)
,橢圓
另一個焦點(diǎn)是
,且
.
(1)求橢圓
的方程;
(2)設(shè)過點(diǎn)
的直線
與
交于點(diǎn)
(
不在
軸上),垂直于
的直線與
交于點(diǎn)
,與
軸交于點(diǎn)
.若
,且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)舉行“新冠肺炎”防控知識閉卷考試比賽,總分獲得一等獎、二等獎、三等獎的代表隊人數(shù)情況如表,其中一等獎代表隊比三等獎代表隊多10人.該校政教處為使頒獎儀式有序進(jìn)行,氣氛活躍,在頒獎過程中穿插抽獎活動.并用分層抽樣的方法從三個代表隊中共抽取16人在前排就坐,其中二等獎代表隊有5人(同隊內(nèi)男女生仍采用分層抽樣)
名次 性別 | 一等獎 代表隊 | 二等獎 代表隊 | 三等獎 代表隊 |
男生 | ? | 30 | ◎ |
女生 | 30 | 20 | 30 |
(1)從前排就坐的一等獎代表隊中隨機(jī)抽取3人上臺領(lǐng)獎,用X表示女生上臺領(lǐng)獎的人數(shù),求X的分布列和數(shù)學(xué)期望E(X).
(2)抽獎活動中,代表隊員通過操作按鍵,使電腦自動產(chǎn)生[﹣2,2]內(nèi)的兩個均勻隨機(jī)數(shù)x,y,隨后電腦自動運(yùn)行如圖所示的程序框圖的相應(yīng)程序.若電腦顯示“中獎”,則代表隊員獲相應(yīng)獎品;若電腦顯示“謝謝”,則不中獎.求代表隊隊員獲得獎品的概率.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com