已知函數(shù)f(x)=
+aln(x-1)(a∈R).
(Ⅰ)若f(x)在[2,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=2時(shí),求證:1-
<2ln(x-1)<2x-4(x>2);
(Ⅲ)求證:
+
+…+
<lnn<1+
+ +
(n∈N*,且n≥2).
(Ⅰ)
;(Ⅱ)詳見解析;(Ⅲ)詳見解析.
解析試題分析:(Ⅰ) 利用導(dǎo)數(shù)分析單調(diào)性,把恒成立問題轉(zhuǎn)化為最值;(Ⅱ)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性可求;(Ⅲ)
利用放縮法和數(shù)列求和可證.
試題解析:(Ⅰ)由已知,得f(x)=-1+
+aln(x-1),
求導(dǎo)數(shù),得f ′(x)=-
+
.
∵f(x)在[2,+∞)上是增函數(shù),
∴f ′(x)≥0在[2,+∞)上恒成立,即a≥
在[2,+∞)上恒成立,
∴a≥(
)max.
∵x≥2,∴0<
≤1,∴a≥1.
故實(shí)數(shù)a的取值范圍為[1,+∞). 4分
(Ⅱ)當(dāng)a=2時(shí),由(Ⅰ)知,f(x)在[2,+∞)上是增函數(shù),
∴當(dāng)x>2時(shí),f(x)>f(2),即-1+
+2ln(x-1)>0,
∴2ln(x-1)>1-
.
令g(x)=2x-4-2ln(x-1),則g′(x)=2-
=
.
∵x>2,∴g′(x)>0,
∴g(x)在(2,+∞)上是增函數(shù),
∴g(x)>g(2)=0,即2x-4-2ln(x-1)>0,
∴2x-4>2ln(x-1).
綜上可得,1-
<2ln(x-1)<2x-4(x>2). 9分
(Ⅲ)由(Ⅱ),得1-
<2ln(x-1)<2x-4(x>2),
令x-1=
,則
<2ln
<2·
,k=1,2, ,n-1.
將上述n-1個(gè)不等式依次相加,得
+
+ …+
<2(ln
+ln
+…+ln
)<2(1+
+…+
),
∴
+
+…+
<2lnn<2(1+
+…+
),
∴
+
+…+
<lnn<1+
+…+
(n∈N*,且n≥2). 14分
考點(diǎn):導(dǎo)數(shù),函數(shù)的單調(diào)性,數(shù)列求和.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
若
,其中
.
(1)當(dāng)
時(shí),求函數(shù)
在區(qū)間
上的最大值;
(2)當(dāng)
時(shí),若
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,其中
且
.
(I)求函數(shù)
的單調(diào)區(qū)間;
(II)當(dāng)
時(shí),若存在
,使
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若在區(qū)間[0,2]上恒有
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,某自來水公司要在公路兩側(cè)排水管,公路為東西方向,在路北側(cè)沿直線
排,在路南側(cè)沿直線
排,現(xiàn)要在矩形區(qū)域
內(nèi)沿直線將
與
接通.已知
,
,公路兩側(cè)排管費(fèi)用為每米1萬元,穿過公路的
部分的排管費(fèi)用為每米2萬元,設(shè)
與
所成的小于
的角為
.![]()
(Ⅰ)求矩形區(qū)域
內(nèi)的排管費(fèi)用
關(guān)于
的函數(shù)關(guān)系式;
(Ⅱ)求排管的最小費(fèi)用及相應(yīng)的角
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)已知函數(shù)
.
(1)當(dāng)
時(shí),求
在
最小值;
(2)若
存在單調(diào)遞減區(qū)間,求
的取值范圍;
(3)求證:
(
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=
x
-ax+(a-1)
,
.
(1)討論函數(shù)
的單調(diào)性;(2)若
,設(shè)
,
(ⅰ)求證g(x)為單調(diào)遞增函數(shù);
(ⅱ)求證對(duì)任意x
,x![]()
![]()
,x![]()
x
,有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)已知函數(shù)
.
(Ⅰ)當(dāng)
時(shí),求函數(shù)
的單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)
在區(qū)間
上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
與
的圖像都過點(diǎn)
,且它們?cè)邳c(diǎn)
處有公共切線.
(1)求函數(shù)
和
的表達(dá)式及在點(diǎn)
處的公切線方程;
(2)設(shè)
,其中
,求
的單調(diào)區(qū)間.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com