【題目】某地區2008年至2016年糧食產量的部分數據如下表:
![]()
(1)求該地區2008年至2016年的糧食年產量
與年份
之間的線性回歸方程;
(2)利用(1)中的回歸方程,分析2008年至2016年該地區糧食產量的變化情況,并預測該地區 2018年的糧食產量.
附:回歸直線的斜率和截距的最小二乘估計公式分別為
,
.
【答案】(1)
;(2)測該地區2018 量為299. 2萬噸.
【解析】試題分析:(1)計算
和
,利用
的計算公式即可得解;
(2)由
的意義得該地區糧食產量逐年增加,平均每兩年增加6. 5 萬噸,將
代入中的線性回歸方程得預測值.
試題解析:
(1)由所給數據可以看出,糧食年產量
與年份
之間是近似直線上升,下面來求線性回歸方程,為此對數據預處理如下:
![]()
對預處理后的數據,容易算得
,
∴
,
.
由上述計算結果,知所求線性回歸方程為
,
即
.
(2)由(1)知,
,故2008年至2016年該地區糧食產量逐年增加,平均每兩年增加6. 5 萬噸.
將
代入(1)中的線性回歸方程,得
,故預測該地區2018 量為299. 2萬噸.
科目:高中數學 來源: 題型:
【題目】隨著人們對環境關注度的提高,綠色低碳出行越來越受到市民重視. 為此貴陽市建立了公共自行車服務系統,市民憑本人二代身份證到自行車服務中心辦理誠信借車卡借車,初次辦卡時卡內預先贈送20積分,當積分為0時,借車卡將自動鎖定,限制借車,用戶應持卡到公共自行車服務中心以1元購1個積分的形式再次激活該卡,為了鼓勵市民租用公共自行車出行,同時督促市民盡快還車,方便更多的市民使用,公共自行車按每車每次的租用時間進行扣分收費,具體扣分標準如下:
①租用時間不超過1小時,免費;
②租用時間為1小時以上且不超過2小時,扣1分;
③租用時間為2小時以上且不超過3小時,扣2分;
④租用時間超過3小時,按每小時扣2分收費(不足1小時的部分按1小時計算).
甲、乙兩人獨立出行,各租用公共自行車一次,兩人租車時間都不會超過3小時,設甲、乙租用時間不超過1小時的概率分別是0.4和0.5;租用時間為1小時以上且不超過2小時的概率分別是0.4和0.3.
(1)求甲、乙兩人所扣積分相同的概率;
(2)設甲、乙兩人所扣積分之和為隨機變量
,求
的分布列和數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x-a|.
(1)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實數a的值;
(2)在(1)的條件下,若f(x)+f(x+5)≥m對一切實數x恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,矩形ABCD的邊AB=m,BC=4,PA⊥平面ABCD,PA=3,現有數據:
①
;②m=3;③m=4;④
.若在BC邊上存在點Q(Q不在端點B、C處),使PQ⊥QD,則m可以取( )![]()
A.①②
B.①②③
C.②④
D.①
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設進入某商場的每一位顧客購買甲種商品的概率為0.5,購買乙種商品的概率為0.6,且購買甲種商品與購買乙種商品相互獨立,各顧客之間購買商品也是相互獨立的.
(1)求進入商場的1位顧客購買甲、乙兩種商品中的一種的概率;
(2)求進入商場的1位顧客至少購買甲、乙兩種商品中的一種的概率;
(3)記ξ表示進入商場的3位顧客中至少購買甲、乙兩種商品中的一種的人數,求ξ的分布列及期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)是定義域為R的偶函數,當x≥0時,f(x)=
,若關于x的方程[f(x)]2+af(x)﹣a﹣1=0(a∈R)有且只有7個不同實數根,則a的取值范圍是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com