【題目】振興中學某班的學生對本校學生會倡導的“抗震救災,眾志成城”自愿捐款活動進行抽樣調查,得到了一組學生捐款情況的數據.下圖是根據這組數據繪制的統計圖,圖中從左到右各長方形的高度之比為3∶4∶5∶8∶6,又知此次調查中捐款25元和30元的學生一共42人.
![]()
(1)他們一共調查了多少人?
(2)這組數據的眾數、中位數各是多少?
(3)若該校共有1560名學生,估計全校學生捐款多少元.
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠A、∠B、∠C所對的邊分別是a、b、c,在下列關系中,不屬于直角三角形的是( )
A. b2=a2﹣c2 B. a:b:c=3:4:5
C. ∠A﹣∠B=∠C D. ∠A:∠B:∠C=3:4:5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中∠C=90°,點O是AB邊上一點,以OA為半徑作⊙O,與邊AC交于點D,連接BD,若∠DBC=∠A,求證:BD是⊙O的切線. ![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在八次數學測試中,甲、乙兩人的成績如下:
甲:89,93,88,91,94,90,88,87 乙:92,90,85,93,95,86,87,92
請你從下列角度比較兩人成績的情況,并說明理由:
(1)分別計算兩人的極差;并說明誰的成績變化范圍大;
(2)根據平均數來判斷兩人的成績誰優誰次;
(3)根據眾數來判斷兩人的成績誰優誰次;
(4)根據中位數來判斷兩人的成績誰優誰次;
(5)根據方差來判斷兩人的成績誰更穩定.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知一次函數y=﹣2x+b的圖象與x軸、y軸分別交于B,A兩點,與反比例函數y=
(x>0)交于C,D兩點.![]()
(1)若點D的坐標為(2,m),則m= , b=;
(2)在(1)的條件下,通過計算判斷AC與BD的數量關系;
(3)若在一次函數y=﹣2x+b與反比例函數y=
(x>0)的圖象第一象限始終有兩個交點的前提下,不論b為何值,(2)中AC與BD的數量關系是否恒成立?試說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線C1:y1=tx2﹣1(t>0)和拋物線C2:y2=﹣4(x﹣h)2+1(h≥1).![]()
(1)兩拋物線的頂點A、B的坐標分別為和;
(2)設拋物線C2的對稱軸與拋物線C1交于點N,則t為何值時,A、B、M、N為頂點的四邊形是平行四邊形.
(3)設拋物線C1與x軸的左交點為點E,拋物線C2與x軸的右邊交點為點F,試問,在第(2)問的前提下,四邊形AEBF能否為矩形?若能,求出h值;若不能,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀理解:已知Q、K、R為數軸上三點,若點K到點Q的距離是點K到點R的距離的2倍,我們就稱點K是有序點對
的好點.
根據下列題意解答問題:
(1)如圖1,數軸上點Q表示的數為1,點P表示的數為0,點K表示的數為1,點R表示的數為2.因為點K到點Q的距離是2,點K到點R的距離是1,所以點K是有序點對
的好點,但點K不是有序點對
的好點.同理可以判斷:點P是不是有序點對
的好點;
(2)如圖2,數軸上點M表示的數為-1,點N表示的數為5,點H表示的數為x,若點H是有序點對
的好點,求x的值;
(3)如圖3,數軸上點A表示的數為20,點B表示的數為10.現有一只電子螞蟻C從點B出發,以每秒3個單位的速度向左運動t秒(t>0).當點A、B、C中恰有一個點為其余兩有序點對的好點,直接寫出t的所有可能的值.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了進一步普及足球知識,傳播足球文化,我市舉行了“足球進校園”知識競賽活動,為了解足球知識的普及情況,隨機抽取了部分獲獎情況進行整理,得到下列不完整的統計圖表:
獲獎等次 | 頻數 | 頻率 |
一等獎 | 10 | 0.05 |
二等獎 | 20 | 0.10 |
三等獎 | 30 | b |
優勝獎 | a | 0.30 |
鼓勵獎 | 80 | 0.40 |
請根據所給信息,解答下列問題:
(1)a= , b= , 且補全頻數分布直方圖;
(2)若用扇形統計圖來描述獲獎分布情況,問獲得優勝獎對應的扇形圓心角的度數是多少?
(3)若我市初中生共有16000人,競賽活動獲獎率為40%,獲三等獎以上的學生表示對“足球比較喜歡”,請你估計我市初中生對“足球比較喜歡”的有多少人?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com