【題目】如圖,已知正方形ABCD中,邊長為10cm,點E在AB邊上,BE=6cm.如果點P在線段BC上以4cm/秒的速度由B點向C點運動,同時,點Q在線段CD上以acm/秒的速度由C點向D點運動,設(shè)運動的時間為t秒,
(1)CP的長為 cm(用含t的代數(shù)式表示);
(2)若以E、B、P為頂點的三角形和以P、C、Q為頂點的三角形全等,求a的值.
(3)若點Q以(2)中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿正方形ABCD四邊運動.則點P與點Q會不會相遇?若不相遇,請說明理由.若相遇,求出經(jīng)過多長時間點P與點Q第一次在正方形ABCD的何處相遇?
![]()
【答案】(1)10-4t ;(2)a的值為4或4.8;(3)經(jīng)過37.5秒,P,Q第一次在正方形的A點相遇.
【解析】試題分析:(1)由題意可得BP=4t,從而可得CP的長;
(2)分情況討論△BPE與△PCQ全等,通過不同的對應(yīng)關(guān)系即可求得;
(3)分情況討論,如果速度一樣則不可能相遇,只有不同的速度才可以相遇,因此通過(2)中a的不同值進(jìn)行討論即可得.
試題解析:(1)PC=BC-BP=10-4t ;
(2)當(dāng)△BEP≌△CPQ時有BE=CP,BP=CQ,∴6=10-4t,4t=at,∴t=1,a=4,
當(dāng)△BEP≌△CQP時有BP=CP,BE=CQ,∴10-4t=4t,6=at,∴t=1.25,a=4.8,
∴a的值為4或4.8;
(3)當(dāng)a=4時,P、Q的運動速度相同且運動方向一致,∴P,Q不會相遇,
當(dāng)a=4.8時,設(shè)經(jīng)過x秒后,P,Q第一次相遇,
4.8x-4x=30,
x=37.5,
∴經(jīng)過37.5秒,P,Q第一次在正方形的A點相遇.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知開口向下的拋物線y1=ax2﹣2ax+1過點A(m,1),與y軸交于點C,頂點為B,將拋物線y1繞點C旋轉(zhuǎn)180°后得到拋物線y2,點A,B的對應(yīng)點分別為點D,E.
(1)直接寫出點A,C,D的坐標(biāo);
(2)當(dāng)四邊形ABCD是矩形時,求a的值及拋物線y2的解析式;
(3)在(2)的條件下,連接DC,線段DC上的動點P從點D出發(fā),以每秒1個單位長度的速度運動到點C停止,在點P運動的過程中,過點P作直線l⊥x軸,將矩形ABDE沿直線l折疊,設(shè)矩形折疊后相互重合部分面積為S平方單位,點P的運動時間為t秒,求S與t的函數(shù)關(guān)系.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點A、B的坐標(biāo)分別為(8,0)、(0,2),C是AB的中點,過點C作y軸的垂線,垂足為D,動點P從點D出發(fā),沿DC向點C勻速運動,過點P作x軸的垂線,垂足為E,連接BP、EC.當(dāng)BP所在直線與EC所在直線第一次垂直時,點P的坐標(biāo)為 .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,點O是AB中點,連接OH,則OH= .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個數(shù)的平方根為2a+3和a-15,則這個數(shù)是( )
A.-18B.64C.121D.以上結(jié)論都不是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明、小華、小敏三人分別拿出相同數(shù)量的錢,合伙訂購某種筆記本若干本,筆記本買來后,小明、小華分別比小敏多拿了5本和7本,最后結(jié)算時,三人要求按所得筆記本的實際數(shù)量付錢,多退少補(bǔ),結(jié)果小明要付給小敏3元,那么,小華應(yīng)付給小敏元.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com