【題目】某商品的進價為每件50元,售價為每件60元,每天可賣出190件;如果每件商品的售價每上漲1元,則每天少賣10件,設每件商品的售價上漲x元,每天的銷售利潤為y元.
(1)求y關于x的關系式;
(2)每件商品的售價定為多少元時,每天的利潤恰為1980元?
(3)每件商品的售價定為多少元時,每天可獲得最大利潤?最大利潤是多少元?
【答案】(1)y=﹣10x2+90x+1900;(2)每件商品的售價定為61元或68元時,每天的利潤恰為1980元;(3)每件商品的售價定為64.5元時,每天可獲得最大利潤,最大利潤是2102.5元.
【解析】試題分析:(1)利用銷量乘以每件利潤=總利潤得出關系式即可;
(2)利用(1)中所求關系式,進而使y=1980進而得出即可;
(3)利用配方法求出二次函數最值,結合x的取值范圍得出答案.
試題解析:(1)設每件商品的售價上漲x元,每天的銷售利潤為y元,
則y=(60﹣50+x)(190﹣10x)=﹣10x2+90x+1900;
(2)當y=1980,則1980=﹣10x2+90x+1900,
解得:x1=1,x2=8.
故每件商品的售價定為61元或68元時,每天的利潤恰為1980元;
(3)y=﹣10x2+90x+1900=﹣10(x﹣
)2+2102.5,
故當x=4.5時,y=2102.5(元),
即每件商品的售價定為64.5元時,每天可獲得最大利潤,最大利潤是2102.5元.
科目:初中數學 來源: 題型:
【題目】如圖,一棵大樹在一次強臺風中折斷倒下,未折斷樹桿
與地面仍保持垂直的關系,而折斷部分
與未折斷樹桿
形成
的夾角.樹桿
旁有一座與地面垂直的鐵塔
,測得
米,塔高
米.在某一時刻的太陽照射下,未折斷樹桿
落在地面的影子
長為
米,且點
、
、
、
在同一條直線上,點
、
、
也在同一條直線上.求這棵大樹沒有折斷前的高度.(結果精確到
,參考數據:
,
,
).
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列四幅圖象近似刻畫兩個變量之間的關系,請按圖象順序將下面四種情景與之對應排序( ).
![]()
①一輛汽車在公路上勻速行駛(汽車行駛的路程與時間的關系)
②向錐形瓶中勻速注水(水面的高度與注水時間的關系)
③將常溫下的溫度計插入一杯熱水中(溫度計的讀數與時間的關系)
④一杯越來越涼的水(水溫與時間的關系)
A.①②④③ B.③④②①
C.①④②③ D.③②④①
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料:
“
≥0”這個結論在數學中非常有用,有時我們需要將代數式配成完全平方式.例如:
,
∵
≥0,
∴
≥1,
∴
≥1.
試利用“配方法”解決下列問題:
(1)填空:
(x )2+ ;
(2) 已知a,b,c是△ABC的三邊長,滿足a2+b2=10a+8b﹣41,且c是△ABC中最長的邊,求c的取值范圍.
(3)比較代數式
與
的大小.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在△ABC中,AD平分∠BAC,AD⊥BC,垂足為D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為E.
(1)求證:四邊形ADCE是矩形;
(2)當△ABC滿足什么條件時,四邊形ADCE是正方形?給出證明.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=12厘米,(即∠B=∠C),BC=9厘米,點M為AB的中點,
(1)如果點P在線段BC上以2厘米/秒的速度由點B向點C運動,同時,點Q在線段CA上由點C向點A運動.
①若點Q的運動速度與點P的運動速度相等,經過1.5秒后,△BPM與△CQP是否全等?請說明理由.
②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPM與△CQP全等?
(2)若點Q以②中的運動速度從點C出發,點P以原來的運動速度從點B同時出發,都逆時針沿△ABC三邊運動,求經過多長時間點P與點Q第一次在△ABC的哪條邊上相遇?
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,D是BC邊上的一點,E為AD的中點,過A作BC的平行線交CE的延長線于F,且AF=BD,連接BF.
(1)求證:BD=CD;
(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結論.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在方格紙內將△ABC經過一次平移后得到△A′B′C′,圖中標出了點B的對應點B′.
![]()
(1) 補全△A′B′C′;
(2) 根據下列條件,利用網格點和直尺畫圖:
畫出△ABC中:
①AC邊上的中線BD;
②AC邊上的高線BE;
(3)寫出△ABD的面積 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,甲轉盤被分成3個面積相等的扇形、乙轉盤被分成2個面積相等的扇形.小夏和小秋利用它們來做決定獲勝與否的游戲.規定小夏轉甲盤一次、小秋轉乙盤一次為一次游戲(當指針指在邊界線上時視為無效,重轉).
(1)小夏說:“如果兩個指針所指區域內的數之和為6或7,則我獲勝;否則你獲勝”.按小夏設計的規則,請你寫出兩人獲勝的可能性分別是多少?
(2)請你對小夏和小秋玩的這種游戲設計一種公平的游戲規則,并用一種合適的方法(例如:樹狀圖,列表)說明其公平性.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com