【題目】如圖1,△ABC的邊BC在直線l上,AC⊥BC,且AC=BC;△EFP的邊FP也在直線l上,邊EF與邊AC重合,且EF=FP.
(1)示例:在圖1中,通過觀察、測量,猜想并寫出AB與AP所滿足的數量關系和位置關系.
答:AB與AP的數量關系和位置關系分別是 、 .
(2)將△EFP沿直線l向左平移到圖2的位置時,EP交AC于點Q,連結AP,BQ.請你觀察、測量,猜想并寫出BQ與AP所滿足的數量關系和位置關系.答:BQ與AP的數量關系和位置關系分別是 、 .
(3)將△EFP沿直線l向左平移到圖3的位置時,EP的延長線交AC的延長線于點Q,連結AP、BQ.你認為(2)中所猜想的BQ與AP的數量關系和位置關系還成立嗎?若成立,給出證明;若不成立,請說明理由.![]()
【答案】(1)AB=AP,AB⊥AP;(2)BQ=AP,BQ⊥AP;(3)成立,證明詳見解析.
【解析】試題分析:(1)由于AC⊥BC,且AC=BC,邊EF與邊AC重合,且EF=FP,則△ABC與△EFP是全等的等腰直角三角形,根據等腰直角三角形的性質得到∠BAC=∠CAP=45°,AB=AP,則∠BAP=90°,于是AP⊥AB;
(2)延長BO交AP于H點,可得到△OPC為等腰直角三角形,則有OC=PC,根據“SAS”可判斷△ACP≌△BCO,則AP=BO,∠CAP=∠CBO,利用三角形內角和定理可得到∠AHO=∠BCO=90°,即AP⊥BO;
(3)BO與AP所滿足的數量關系為相等,位置關系為垂直.證明方法與(2)一樣.
試題解析:(1)AB=AP,AB⊥AP;
(2)BQ=AP,BQ⊥AP;
(3)成立.理由如下:
∵∠EPF=45°,∴∠CPQ=45°.
∵AC⊥BC,∴∠CQP=∠CPQ,CQ=CP.
在Rt△BCQ和Rt△ACP中,∵BC=AC,∠BCQ=∠ACP,CQ=CP,∴Rt△BCQ≌Rt△ACP(SAS),
∴BQ=AP;
延長QB交AP于點N,∴∠PBN=∠CBQ.
∵Rt△BCQ≌Rt△ACP,∴∠BQC=∠APC.
在Rt△BCQ中,∵∠BCQ+∠CBQ=90°,∴∠APC+∠PBN=90°,∴∠PNB=90°,∴QB⊥AP.
科目:初中數學 來源: 題型:
【題目】我國質檢總局規定,針織內衣等直接接觸皮膚的制品,每千克的衣物上甲醛含量應在0.000075千克以下.將0.000075用科學記數法表示為( )
A.7.5×105
B.7.5×10﹣5
C.0.75×10﹣4
D.75×10﹣6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,△ABC與△ADE均是頂角為40°的等腰三角形,BC、DE分別是底邊,求證:BD=CE;
(2)如圖2,△ACB和△DCE均為等邊三角形,點A、D、E在同一直線上,連接BE.
填空:∠AEB的度數為 ;線段BE與AD之間的數量關系是 .
(3)拓展探究
如圖3,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點A、D、E在同一直線上,CM為△DCE中DE邊上的高,連接BE.請判斷∠AEB的度數及線段CM、AE、BE之間的數量關系,并說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在梯形ABCD中,AD∥BC,AB=AD=5,tan∠DBC=
.點E為線段BD上任意一點(點E與點B,D不重合),過點E作EF∥CD,與BC相交于點F,連接CE.設BE=x,y=
.
![]()
(1)求BD的長;
(2)如果BC=BD,當△DCE是等腰三角形時,求x的值;
(3)如果BC=10,求y關于x的函數解析式,并寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2019年,保康縣全年投入資金3593萬元,實施學校建設項目16個,新建、改擴建校舍20398平方米.其中20398m2用科學記數法可表示為( )
A.20.4×103m2B.2.03×104m2C.2.04×104m2D.3.60×103萬元
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線CD與直線AB相交于點C,根據下列語句畫圖(注:可利用三角尺畫圖,但要保持圖形清晰) ![]()
(1)過點P作PQ∥AB,交CD于點Q,過點P作PR⊥CD,垂足為R;
(2)若∠DCB=120°,則∠QRC是多少度?并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com