【題目】如圖,邊長為2a的等邊三角形ABC中,M是高CH所在直線上的一個動點,連接MB,將線段BM繞點B逆時針旋轉60°得到BN,連接HN.則在點M運動過程中,線段HN長度的最小值是( )
![]()
A.
a B.a C.
D.![]()
【答案】D
【解析】
試題分析:取CB的中點G,連接MG,根據等邊三角形的性質可得BH=BG,再求出∠HBN=∠MBG,根據旋轉的性質可得MB=NB,然后利用“邊角邊”證明∴△MBG≌△NBH,再根據全等三角形對應邊相等可得HN=MG,然后根據垂線段最短可得MG⊥CH時最短,再根據∠BCH=30°求解即可.
解:如圖,取BC的中點G,連接MG,
∵旋轉角為60°,
∴∠MBH+∠HBN=60°,
又∵∠MBH+∠MBC=∠ABC=60°,
∴∠HBN=∠GBM,
∵CH是等邊△ABC的對稱軸,
∴HB=
AB,
∴HB=BG,
又∵MB旋轉到BN,
∴BM=BN,
在△MBG和△NBH中,
,
∴△MBG≌△NBH(SAS),
∴MG=NH,
根據垂線段最短,MG⊥CH時,MG最短,即HN最短,
此時∵∠BCH=
×60°=30°,CG=
AB=
×2a=a,
∴MG=
CG=
×a=
,
∴HN=
,
故選:D.
![]()
科目:初中數學 來源: 題型:
【題目】閱讀下面材料:
在數學課上,老師請同學思考如下問題:如圖1,我們把一個四邊形ABCD的四邊中點E,F,G,H依次連接起來得到的四邊形EFGH是平行四邊形嗎?
小敏在思考問題時,有如下思路:連接AC.
![]()
結合小敏的思路作答:
(1)若只改變圖1中四邊形ABCD的形狀(如圖2),則四邊形EFGH還是平行四邊形嗎?說明理由,參考小敏思考問題的方法解決一下問題;
(2)如圖2,在(1)的條件下,若連接AC,BD.
①當AC與BD滿足什么條件時,四邊形EFGH是菱形,寫出結論并證明;
②當AC與BD滿足什么條件時,四邊形EFGH是矩形,直接寫出結論.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了更好地迎接廬陽區排球比賽,某校積極準備,從全校學生中遴選出21名同學進行相應的排球訓練,該訓練隊成員的身高如下表:
身高(cm) | 170 | 172 | 175 | 178 | 180 | 182 | 185 |
人數(個) | 2 | 4 | 5 | 2 | 4 | 3 | 1 |
則該校排球隊21名同學身高的眾數和中位數分別是(單位:cm)( 。
A. 185,178B. 178,175C. 175,178D. 175,175
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=64°,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EF(E在BC上,F在AC上)折疊,點C與點O恰好重合,則∠OEC為_________度.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】山地自行車越來越受到中學生的喜愛,各種品牌相繼投放市場,某車行經營的A型車去年銷售總額為5萬元,今年每輛銷售價比去年降低400元,若賣出的數量相同,銷售總額將比去年減少20%.
(1)今年A型車每輛售價多少元?(用列方程的方法解答)
(2)該車行計劃新進一批A型車和新款B型車共60輛,且B型車的進貨數量不超過A型車數量的兩倍,應如何進貨才能使這批車獲利最多?
A,B兩種型號車的進貨和銷售價格如下表:
A型車 | B型車 | |
進貨價格(元) | 1100 | 1400 |
銷售價格(元) | 今年的銷售價格 | 2000 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com