【題目】濠河成功晉升國家
級旅游景區,為了保護這條美麗的護城河,南通市政府投入大量資金治理濠河污染,在城郊建立了一個大型污水處理廠,設庫池中有待處理的污水
噸,又從城區流入庫池的污水按每小時
噸的固定流量增加,如果同時開動
臺機組需
小時剛好處理完污水,同時開動
臺機組需
小時剛好處理完污水,若需要
小時內將污水處理完畢,那么至少要同時開動多少臺機組?(每臺機組每小時處理污水量不變)
科目:初中數學 來源: 題型:
【題目】如圖,△ABC的頂點坐標分別為A(1,3)、B(4,2)、C(2,1).
(1)作出與△ABC關于x軸對稱的△A1B1C1,并寫出A1、B1、C1的坐標;
(2)以原點O為位似中心,在原點的另一側畫出△A2B2C2,使
.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】長沙市馬王堆蔬菜批發市場某批發商原計劃以每千克10元的單價對外批發銷售某種蔬菜
為了加快銷售,該批發商對價格進行兩次下調后,售價降為每千克
元.
求平均每次下調的百分率;
某大型超市準備到該批發商處購買2噸該蔬菜,因數量較多,該批發商決定再給予兩種優惠方案以供選擇
方案一:打八折銷售;方案二:不打折,每噸優惠現金1000元
試問超市采購員選擇哪種方案更優惠?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在8×8的正方形網格中,每個小正方形的邊長都為1,網格中有一個格點△ABC(即三角形的頂點都在格點上).
(1)在圖中作出△ABC關于直線l對稱的△A1B1C1;(要求:A與A1,B與B1,C與C1相對應)
(2)
是 三角形;
(3)若有一格點P到點A、B的距離相等(PA=PB),則網格中滿足條件的點P共有 個;
(4)在直線
上找一點Q,使QB+QC的值最小。
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把矩形紙片ABCD沿對角線折疊,設重疊部分為△EBD,那么下列說法錯誤的是( )
![]()
A. △EBD是等腰三角形,EB=ED B. 折疊后∠ABE和∠C′BD一定相等
C. 折疊后得到的圖形是軸對稱圖形 D. △EBA和△EDC′一定是全等三角形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E.猜測DE、BD、CE三條線段之間的數量關系(直接寫出結果即可).
(2)如圖2,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問第(1)題中DE、BD、CE之間的關系是否仍然成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應用:如圖3,D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷線段DF、EF的數量關系,并說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,已知△ABC和△DCE均是等邊三角形,點B. C. E在同一條直線上,AE與BD交于點O,AE與CD交于點G,AC與BD交于點F,連接OC、FG,則下列結論中:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,正確的是( )個
![]()
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠C=90°,D是AC的中點,E是AB的中點,作EF⊥BC于F,延長BC至G,使CG=BF,連接CE、DE、DG.
![]()
(1)如圖1,求證:四邊形CEDG是平行四邊形;
(2)如圖2,連接EG交AC于點H,若EG⊥AB,請直接寫出圖2中所有長度等于
GH的線段.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AD∥BC,M為CD中點,AM平分∠DAB,AD+BC=AB.求證:BM平分∠ABC.
![]()
小淇證明過程如下:
延長BC至點F,使得CF=AD,連接MF.
∵ AD∥BC, ∴ ∠D=∠MCF.
∵ M為CD中點,∴ DM=CM.
在△ADM和△FCM中,
∴ △ADM≌△FCM(SAS). ∴ AM=FM.
∵ BF=BC+CF=BC+AD=AB,∴ △ABF是等腰三角形.
∴ BM平分∠ABC(等腰三角形底邊上的中線與頂角的角平分重合).
(1)請你簡要敘述小淇證明方法的錯誤之處;
(2)若AB=5,AM=3,求四邊形ABCD面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com