【題目】如圖,拋物線y=﹣x2+bx+c經過A(﹣1,0),C(0,3)兩點,它的對稱軸與x軸交于點F,過點C作CE∥x軸交拋物線于另一點E,連結EF,AC.
(1)求該拋物線的表達式及點E的坐標;
(2)在線段EF上任取點P,連結OP,作點F關于直線OP的對稱點G,連結EG和PG,當點G恰好落到y軸上時,求△EGP的面積.
![]()
【答案】(1)y=﹣x2+2x+3,E(2,3);(2)1.
【解析】
(1)用待定系數法即可求得拋物線的表達式,根據點E與點C是對稱點即可得到E點坐標;
(2)連接FG,過P作PM⊥x軸于M,過E作EN⊥x軸于N,則PM∥EN,易得△CEG與△OFG為等腰直角三角形,則∠EGF=90°,易得EF的解析式為:y=3x﹣3,△POM是等腰直角三角形,可求得P(
,
),即點P為EF的中點,則S△EGP=
S△EGF,再根據三角形的面積公式求解即可.
(1)把A(﹣1,0),C(0,3)兩點代入拋物線y=﹣x2+bx+c中得:
,
解得:
,
∴該拋物線的表達式為:y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴對稱軸是:x=1,
∵CE∥x軸,
∴點C與點E是對稱點,
∴E(2,3);
(2)
連接FG,過P作PM⊥x軸于M,過E作EN⊥x軸于N,則PM∥EN,
∵F與G關于OP對稱,且G在y軸上,
∴OF=OG=1,
∴FG=
,∠OGF=45°,
∵OC=3,
∴CG=3﹣1=2=CE,
∴△ECG是等腰直角三角形,
∴EG=2
,∠CGE=45°,
∴∠EGF=90°,
∵E(2,3),F(1,0),
易得EF的解析式為:y=3x﹣3,
設P(x,3x﹣3),
∵∠POM=45°,
∴△POM是等腰直角三角形,
∴PM=OM,即x=3x﹣3,
解得:x=
,
∴P(
,
),
∴FM=MN=
,
∵PM∥EN,
∴FP=EP,
∴S△EGP=
S△EGF=
=1.
科目:初中數學 來源: 題型:
【題目】如圖所示,點O是等邊三角形ABC內一點,∠AOB=100°,∠BOC=α,D是△ABC外一點,且△ADC≌△BOC,連接OD.
(1)求證:△COD是等邊三角形;
(2)當α=150°時,判斷△AOD的形狀,并說明理由。
(3)探究:當α=_____度時,△AOD是等腰三角形。
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于x的方程|x2﹣x|﹣a=0,給出下列四個結論:①存在實數a,使得方程恰有2個不同的實根; ②存在實數a,使得方程恰有3個不同的實根;③存在實數a,使得方程恰有4個不同的實根;④存在實數a,使得方程恰有6個不同的實根;其中正確的結論個數是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=AC,點D是射線BC上一點(不與B,C重合),以AD為一邊在AD的右側作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
![]()
(1)若∠BAC=90°.
①如圖1,當點D在線段BC上時,∠BCE= °;
②當點D在線段BC的延長線上時,如圖2,①中的結論是否仍然成立?請說明理由;
(2)若∠BAC=75°,點D在射線BC上,∠BCE= °;
(3)若點D在直線BC上移動,其他條件不變.設∠BAC=α,∠BCE=β,α與β有怎樣的數量關系?請直接寫出你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A在x軸的正半軸上,點B在反比例函數y=
(k>0,x>0)的圖象上,延長AB交該函數圖象于另一點C,BC=3AB,點D也在該函數的圖象上,BD=BC,以BC,BD為邊構造CBDE,若點O,B,E在同一條直線上,且CBDE的周長為k,則AB的長為_____.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,E,F分別是AD,BC的中點,AF與BE相交于點M,CE與DF相交于點N,QM⊥BE,QN⊥EC相交于點Q,PM⊥AF,PN⊥DF相交于點P,若2BC=3AB,記△ABM和△CDN的面積和為S,則四邊形MQNP的面積為( )
![]()
A.
S B.
S C.
S D.
S
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,每個最小方格的邊長均為1個單位長度,P1,P2,P3,…均在格點上,其順序按圖中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,-1),P5(-1,-1),P6(-1,2),…,根據這個規律,點P2 019的坐標為_____
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在長方形OABC中,O為平面直角坐標系的原點,點A坐標為(a,0),點C的坐標為(0,b),且a、b滿足
+|b-6|=0,點B在第一象限內,點P從原點出發,以每秒2個單位長度的速度沿著O-C-B-A-O的線路移動.
(1)a=______________,b=_____________,點B的坐標為_______________;
(2)當點P移動4秒時,請指出點P的位置,并求出點P的坐標;
(3)在移動過程中,當點P到x軸的距離為5個單位長度時,求點P移動的時間.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:甲乙兩車分別從相距300千米的A、B兩地同時出發相向而行,其中甲到達B地后立即返回,如圖是甲乙兩車離A地的距離y(千米)與行駛時間x(小時)之間的函數圖象.
(1)求甲車離A地的距離y甲(千米)與行駛時間x(小時)之間的函數關系式,并寫出自變量的取值范圍;
(2)若它們出發第5小時時,離各自出發地的距離相等,求乙車離A地的距離y乙(千米)與行駛時間x(小時)之間的函數關系式,并寫出自變量的取值范圍;
(3)在(2)的條件下,求它們在行駛的過程中相遇的時間.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com